World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Cyclic voltammetric studies of octabutylthiophthalo-cyaninato-cobalt(II) and its self-assembled monolayer (SAM) on gold electrode

    https://doi.org/10.1142/S1088424602000130Cited by:24 (Source: Crossref)

    The synthesis of thiol-derivatized cobalt phthalocyanine complex, 2,3,9,10,16,17,23,24-octa (butylthiophthalocyaninatocobalt(II) (CoOBTPc) is described. Cyclic voltammetric data of this complex in DMF showed five quasi-reversible and reversible, diffusion-controlled redox couples, comprising both the phthalocyanine ring and central metal redox processes. The CoOBTPc complex forms a self-assembled monolayer (SAM) on gold electrode. The investigation of the integrity of this SAM, using the established cyclic voltammetric methods in aqueous alkaline solutions, gave evidence about the formation of a stable and easily reproducible monolayer. However, due to its susceptibility to destruction via oxidative and reductive desorptions, its potential application as an electrochemical sensor in alkaline pH is limited to a potential window of between −0.20 and +0.55 V vs Ag/AgCl.

    References

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes