World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions

    https://doi.org/10.1142/S0219891621500016Cited by:10 (Source: Crossref)

    We consider a class of L2-supercritical inhomogeneous nonlinear Schrödinger equations in two dimensions

    itu+Δu=±|x|b|u|αu,(t,x)×2,
    where 0<b<1 and α>2b. Using a new approach of Arora et al. [Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 148 (2020) 1653–1663], we show the energy scattering for the equation with radially symmetric initial data. In the focusing case, our result extends the one of Farah and Guzmán [Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.) 51 (2020) 449–512] to the whole range of b where the local well-posedness is available. In the defocusing case, our result extends the one in [V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 19(2) (2019) 411–434], where the energy scattering for non-radial initial data was established in dimensions N3.

    Communicated by F. Merle

    AMSC: 35Q55, 35P25

    References

    • 1. A. K. Arora, B. Dodson and J. Murphy, Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 148 (2020) 1653–1663. Web of ScienceGoogle Scholar
    • 2. L. Bergé, Solition stability versus collapse, Phys. Rev. E 62(3) (2000) R3071–R3074. Web of ScienceGoogle Scholar
    • 3. L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. 202 (2021) 112–118. Web of ScienceGoogle Scholar
    • 4. M. Cardoso, L. G. Farah, C. M. Guzmán and J. Murphy, Scattering below the ground state for the intercritical non-radial inhomogeneous NLS, preprint (2020), arXiv:2007.06165. Google Scholar
    • 5. T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10 (American Mathematical Society/Courant Institute of Mathematical Sciences, 2003). Google Scholar
    • 6. J. Chen, On a class of nonlinear inhomogeneous Schrödinger equation, J. Appl. Math. Comput. 32 (2010) 237–253. Google Scholar
    • 7. J. Chen and B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B 8(2) (2007) 357–367. Web of ScienceGoogle Scholar
    • 8. V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2-critical inhomogeneous NLS, J. Evol. Equ. 16(2) (2016) 483–500. Web of ScienceGoogle Scholar
    • 9. V. D. Dinh, Scattering theory in a weighted L2 space for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, to appear in Adv. Pure Appl. Math., preprint (2017), arXiv:1710.01392. Google Scholar
    • 10. V. D. Dinh, On nonlinear Schrödinger equations with repulsive inverse-power potentials, Acta. Appl. Math. 171 (2021) Article number 14, https://doi.org/10.1007/s10440-020-00382-2. Web of ScienceGoogle Scholar
    • 11. V. D. Dinh, Blowup of H1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. 174 (2018) 169–188. Web of ScienceGoogle Scholar
    • 12. V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 19(2) (2019) 411–434. Web of ScienceGoogle Scholar
    • 13. B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc. 145(11) (2017) 4859–4867. Web of ScienceGoogle Scholar
    • 14. L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 16(1) (2016) 193–208. Web of ScienceGoogle Scholar
    • 15. L. G. Farah and C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations 262(8) (2017) 4175–4231. Web of ScienceGoogle Scholar
    • 16. L. G. Farah and C. Guzmán, Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.) 51 (2020) 449–512. Web of ScienceGoogle Scholar
    • 17. G. Fibich and X. P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D 175 (2003) 96–108. Web of ScienceGoogle Scholar
    • 18. F. Genoud, A uniqueness result for Δu λu + V (|x|)up = 0 on 2, Adv. Nonlinear Stud. 11(3) (2011) 483–491. Web of ScienceGoogle Scholar
    • 19. F. Genoud, An inhomogeneous, L2-critical, nonlinear Schrödinger equation, Z. Anal. Anwendungen 31(3) (2012) 283–290. Web of ScienceGoogle Scholar
    • 20. F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst. 21(1) (2008) 137–186. Web of ScienceGoogle Scholar
    • 21. C. M. Guzmán, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl. 37 (2017) 249–286. Web of ScienceGoogle Scholar
    • 22. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) 955–980. Web of ScienceGoogle Scholar
    • 23. C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166(3) (2006) 645–675. Web of ScienceGoogle Scholar
    • 24. Y. Liu, X. P. Wang and K. Wang, Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity, Trans. Amer. Math. Soc. 385(5) (2006) 2105–2122. Web of ScienceGoogle Scholar
    • 25. F. Merle, Nonexistence of minimal blow-up solutions of equations iut = Δu k(x)|u|4 du in N, Ann. Inst. H. Poincaré Phys. Théor. 64(1) (1996) 35–85. Web of ScienceGoogle Scholar
    • 26. P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc. 24(2) (2011) 471–546. Web of ScienceGoogle Scholar
    • 27. W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55(2) (1977) 149–162. Web of ScienceGoogle Scholar
    • 28. T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106 (American Mathematical Society, 2006). Google Scholar
    • 29. M. E. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Vol. 81. (American Mathematical Society, 2007). Google Scholar
    • 30. J. F. Toland, Uniqueness of positive solutions of some semilinear Sturm–Liouville problems on the half line, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984) 259–263. Web of ScienceGoogle Scholar
    • 31. I. Towers and B. A. Malomed, Stable (2+1)-dimensional solitions in a layered medium with sign-alternating Kerr nonlinearity, J. Opt. Soc. Amer. B Opt. Phys. 19(3) (2002) 537–543. Web of ScienceGoogle Scholar
    • 32. C. Xu and T. Zhao, A remark on the scattering theory for the 2D radial focusing INLS, preprint (2019), arXiv:1908.00743. Google Scholar
    • 33. E. Yanagida, Uniqueness of positive radial solutions of Δu + g(r)u + h(r)up = 0 in N, Arch. Ration. Mech. Anal. 115 (1991) 257–274. Web of ScienceGoogle Scholar
    • 34. S. Zhu, Blow-up solutions for the inhomogeneous Schrödinger equation with L2 supercritical nonlinearity, J. Math. Anal. Appl. 409 (2014) 760–776. Web of ScienceGoogle Scholar