World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Global existence of solutions for a multi-phase flow: A drop in a gas-tube

    https://doi.org/10.1142/S0219891616500120Cited by:0 (Source: Crossref)

    In this paper we study the flow of an inviscid fluid composed by three different phases. The model is a simple hyperbolic system of three conservation laws, in Lagrangian coordinates, where the phase interfaces are stationary. Our main result concerns the global existence of weak entropic solutions to the initial-value problem for large initial data.

    Communicated by P. G. LeFloch

    AMSC: 35L65, 35L60, 35L67, 76T99

    References

    • 1. D. Amadori, P. Baiti, A. Corli and E. Dal Santo, Global weak solutions for a model of two-phase flow with a single interface, J. Evol. Equ. 15(3) (2015) 699–726. Crossref, Web of ScienceGoogle Scholar
    • 2. D. Amadori, P. Baiti, A. Corli and E. Dal Santo, Global existence of solutions for a multi-phase flow: A bubble in a liquid tube and related cases, Acta Math. Sci. Ser. B Engl. Ed. 35(4) (2015) 832–854. Crossref, Web of ScienceGoogle Scholar
    • 3. D. Amadori and A. Corli, A hyperbolic model of multi-phase flow, in Hyperbolic Problems: Theory, Numerics, Applications, eds. S. Benzoni-Gavage and D. Serre (Springer, 2008), pp. 407–414. CrossrefGoogle Scholar
    • 4. D. Amadori and A. Corli, On a model of multiphase flow, SIAM J. Math. Anal. 40(1) (2008) 134–166. Crossref, Web of ScienceGoogle Scholar
    • 5. D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal. 72(5) (2010) 2527–2541. Crossref, Web of ScienceGoogle Scholar
    • 6. D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A 131(1) (2001) 1–26. Crossref, Web of ScienceGoogle Scholar
    • 7. F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow, Quart. Appl. Math. 71(1) (2013) 135–182. Crossref, Web of ScienceGoogle Scholar
    • 8. P. Baiti and E. Dal Santo, Front tracking for a 2 × 2 system of conservation laws, Electron. J. Differential Equations 220 (2012) 1–14. Google Scholar
    • 9. A. Bressan, Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Problem, Oxford Lecture Series in Math. and Appl. Vol. 20 (Oxford University Press, 2000). CrossrefGoogle Scholar
    • 10. R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit, Nonlinear Anal. Real World Appl. 13(2) (2012) 2195–2213. Crossref, Web of ScienceGoogle Scholar
    • 11. R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of 1D Euler equations: The non-smooth case, Arch. Ration. Mech. Anal. 219(2) (2016) 701–718. Crossref, Web of ScienceGoogle Scholar
    • 12. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 325, 3rd edn. (Springer, 2010). CrossrefGoogle Scholar
    • 13. H. Fan, On a model of the dynamics of liquid/vapor phase transitions, SIAM J. Appl. Math. 60(4) (2000) 1270–1301. Crossref, Web of ScienceGoogle Scholar
    • 14. E. Godlewski, Coupling fluid models. Exploring some features of interfacial coupling, in Finite Volumes for Complex Applications V (ISTE, London, 2008), pp. 87–102. Google Scholar
    • 15. M. Lewicka, Well-posedness for hyperbolic systems of conservation laws with large BV data, Arch. Ration. Mech. Anal. 173(3) (2004) 415–445. Crossref, Web of ScienceGoogle Scholar
    • 16. T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44 (1968) 642–646. CrossrefGoogle Scholar
    • 17. S. Schochet, Sufficient conditions for local existence via Glimm’s scheme for large BV data, J. Differential Equations 89(2) (1991) 317–354. Crossref, Web of ScienceGoogle Scholar
    • 18. E.-F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction (Springer, 2009). CrossrefGoogle Scholar