World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

A topological approach for emerging D-branes and its implications for gravity

    https://doi.org/10.1142/S0219887821502273Cited by:4 (Source: Crossref)

    In this paper, we introduce a new geometric/topological approach to the emerging braneworld scenario in the context of D-branes using partially negative-dimensional product (PNDP) manifolds. The working hypothesis is based on the fact that the orientability of PNDP manifolds can be arbitrary, and starting from this, we propose that gravitational interaction can derive naturally from the non-orientability. According to this hypothesis, we show that topological defects can emerge from non-orientability and they can be identified as gravitational interaction at macroscopic level. In other words, the orientability of fundamental PNDPs can be related to the appearance of curvature at low-energy scales.

    AMSC: 83E30, 53C25

    References

    • 1. J. Dai, R. G. Leigh and J. Polchinski , New connections between string theories, Mod. Phys. Lett. A 4(21) (1989) 2073–2083. Link, Web of ScienceGoogle Scholar
    • 2. P. Horava , Background duality of open-string models, Phys. Lett. B 231(3) (1989) 251–257. Crossref, Web of ScienceGoogle Scholar
    • 3. C. V. Johnson , D-Branes, Cambridge Monograph on Mathematical Physics, Vol. 29 (Cambridge University Press, Cambridge, England, 2005), p. 2041009. Google Scholar
    • 4. S. Capozziello, G. Basini and M. De Laurentis , Deriving the mass of particles from extended theories of gravity in LHC era, Eur. Phys. J. C 71 (2011) 1679. Crossref, Web of ScienceGoogle Scholar
    • 5. G. Basini and S. Capozziello , A general covariant symplectic structure from conservation laws, Mod. Phys. Lett. A 20 (2005) 251. Link, Web of ScienceGoogle Scholar
    • 6. S. Capozziello and M. De Laurentis , Extended theories of gravity, Phys. Rept. 509 (2011) 167. Crossref, Web of ScienceGoogle Scholar
    • 7. A. Pigazzini, C. Özel, P. Linker and S. Jafari , On PNDP-manifold, Poincare J. Anal. Appl. 8(1) (2021) 111–125. Google Scholar
    • 8. R. Pincak, A. Pigazzini, S. Jafari and C. Özel , The “emerging” reality from “hidden” spaces, Universe 7(3) (2021) 75. Crossref, Web of ScienceGoogle Scholar
    • 9. D. Joyce, Kuranishis and Symplectic Geometry, Vol. II, https://people.maths.ox.ac.uk/joyce/Kuranishi.html. Google Scholar
    • 10. R. Casalbuoni , Conformal symmetry for relativistic point particles, Phys. Rev. D 90 (2014) 026001. Crossref, Web of ScienceGoogle Scholar
    • 11. Y. Cao, N. Conan Leung , Orientability for gauge theories on Calabi? Yau manifolds, Adv. Math. 314 (2017) 48. Crossref, Web of ScienceGoogle Scholar
    • 12. M. J. Hadley , The orientability of space-time, Class. Quantum Grav. 19 (2002) 4565. Crossref, Web of ScienceGoogle Scholar
    • 13. F. Bajardi, D. Vernieri and S. Capozziello, Exact Solutions in Higher-Dimensional Lovelock andAdS5 Chern-Simons Gravity, e-Print:2106.07396 [gr-qc]. Google Scholar
    • 14. S. Capozziello, D. J. Cirilo-Lombardo and A. Dorokhov , Fermion interactions, cosmological constant and spacetime dimensionality in an unified approach based on affine geometry, Int. J. Theor. Phys. 53(11) (2014) 3882. Crossref, Web of ScienceGoogle Scholar
    • 15. N. Arkani-Hamed, A. G. Cohen and H. Georgi , (De)Constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757. Crossref, Web of ScienceGoogle Scholar
    • 16. C. T. Hill, S. Pokorski and J. Wangi , Gauge invariant effective Lagrangian for Kaluza–Klein modes, Phys. Rev. D 64 (2001) 105005. Crossref, Web of ScienceGoogle Scholar
    • 17. H. C. Cheng, C. T. Hill, S. Pokorski and J. Wang , The standard model in the Latticized bulk, Phys. Rev. D 64 (2001) 065007. Crossref, Web of ScienceGoogle Scholar
    • 18. S. Capozziello, D. J. Cirilo-Lombardo and M. De Laurentis , The affine tructure of gravitational theories: Symplectic groups and geometry, Int. J. Geom. Methods Mod. Phys. 11(10) (2014) 1450081. Link, Web of ScienceGoogle Scholar
    • 19. R. C. Myers and V. Periwal , The orientability of random surfaces, Phys. Rev. D 42 (1990) 3600. Crossref, Web of ScienceGoogle Scholar
    • 20. E. Witten , String theory and non-commutative gauge theory, Class. Quantum Grav. 17 (2000) 1299. Crossref, Web of ScienceGoogle Scholar
    • 21. M. B. Green , World sheet dynamics of Bosonic string theory, Phys. Lett. B 193 (1987) 439. Crossref, Web of ScienceGoogle Scholar
    • 22. J. H. Schwarz , The future of string theory, J. Math. Phys. 42 (2001) 2889. Crossref, Web of ScienceGoogle Scholar
    • 23. H. Ooguri and C. Vafa , On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Benetti, S. Capozziello and L. Lobato Graef , Swampland conjecture in f(R) gravity by Noether symmetry approach, Phys. Rev. D 100(8) (2019) 084013. Crossref, Web of ScienceGoogle Scholar