The Noether–Bessel-Hagen symmetry approach for dynamical systems
Abstract
The Noether–Bessel-Hagen theorem can be considered a natural extension of Noether Theorem to search for symmetries. Here, we develop the approach for dynamical systems introducing the basic foundations of the method. Specifically, we establish the Noether–Bessel-Hagen analysis of mechanical systems where external forces are present. In the second part of the paper, the approach is adopted to select symmetries for a given systems. In particular, we focus on the case of harmonic oscillator as a testbed for the theory, and on a cosmological system derived from scalar–tensor gravity with unknown scalar-field potential . We show that the shape of potential is selected by the presence of symmetries. The approach results particularly useful as soon as the Lagrangian of a given system is not immediately identifiable or it is not a Lagrangian system.
References
- 1. , Noether symmetries in cosmology, Riv. Nuovo Cimento 19(4) (1996) 1. Crossref, Web of Science, Google Scholar
- 2. , Noether symmetries as a geometric criterion to select theories of gravity, Int. J. Geom. Methods Modern Phys. 15(Supp. 01) (2018) 1840007. Link, Web of Science, Google Scholar
- 3. , Uber die Erhaltungssatze der Electrodynamik, Math. Ann. 84 (1921) 258–276. Crossref, Google Scholar
- 4. , The Noether Theorems (Springer-Verlag, New York, 2011). Crossref, Google Scholar
- 5. , Introduction to Global Variational Geometry,
Atlantis Studies in Variational Geometry , Vol. 1 (Atlantis Press, Amsterdam–Beijing–Paris, 2015). Crossref, Google Scholar - 6. , Variational principles for locally variational forms, J. Math. Phys. 46 (2005) 052903. Crossref, Web of Science, Google Scholar
- 7. , Cohomology and local variational principles, in Proc. Conf. XV Int. Workshop Geometry and Physics,
Puerto de la Cruz, Canary Islands, Spain ,11–16 September 2006 , Publ. de la RSME, 2007, pp. 119–124. Google Scholar - 8. , The fundamental Lepage form in variational theory for submanifolds, Int. J. Geom. Methods Modern Phys. 15(6) (2018) 1850103. Link, Web of Science, Google Scholar
- 9. , Variational derivatives in locally Lagrangian field theories and Noether–Bessel-Hagen currents, Int. J. Geom. Methods Modern Phys. 13(8) (2016) 1650067. Link, Web of Science, Google Scholar
- 10. , Topological obstructions in Lagrangian field theories, with an application to 3D Chern–Simons gauge theory, J. Math. Phys. 58 (2017) 023502. Crossref, Web of Science, Google Scholar
- 11. , Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Methods Modern Phys. 10(1) (2013) 1220024. Link, Web of Science, Google Scholar
- 12. , Noether’s second theorem in a general setting: Reducible gauge theories, J. Phys. A: Math. Gen. 38 (2005) 5329. Crossref, Google Scholar
- 13. , Invariante Variationsprobleme, Nachr. Konig. Gessell. Wissen. Gottingen, Math.-Phys. Kl. 1918 (1918) 235–257. Google Scholar
- 14. , Invariant variational structures on fibered manifolds, Int. J. Geom. Methods Modern Phys. 12 (2015) 1550020. Link, Web of Science, Google Scholar
- 15. A. Trautman, Invariance of Lagrangian systems, in General Relativity, Papers in Honour of J. L. Synge (Oxford, Clarendon Press, 1972), pp. 85–99. Google Scholar
- 16. , Noether equations and conservation laws, Comm. Math. Phys. 6 (1967) 248–261. Crossref, Google Scholar
- 17. , A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance, J. Math. Anal. Appl. 49 (1975) 469–476. Crossref, Web of Science, Google Scholar
- 18. , Noether’s Theorems, Applications in Mechanics and Field Theory,
Atlantis Studies in Variational Geometry , Vol. 3 (Atlantis Press, Amsterdam, 2016). Crossref, Google Scholar - 19. , Applications of Lie Groups to Differential Equations,
Graduate Texts in Mathematics , Vol. 107 (Springer-Verlag, New York, 1986). Crossref, Google Scholar - 20. , Symmetries and Differential Equations (Springer-Verlag, New York, 1989). Crossref, Google Scholar
- 21. , Variational forces, Lepage Research Institute Library 6 (2018) 1–38. Google Scholar
- 22. , Dissipative systems, conservation laws and symmetries, Internat. J. Solids Structures 33(20–22) (1996) 2959–2968. Crossref, Web of Science, Google Scholar
- 23. , On conservation laws for dissipative systems, Phys. Lett. A 155 (1991) 223–224. Crossref, Web of Science, Google Scholar
- 24. , Spherically symmetric solutions in -gravity via Noether Symmetry Approach, Class. Quantum Grav. 24 (2007) 2153. Crossref, Web of Science, Google Scholar
- 25. , New Schwarzschild-like solutions in gravity through Noether symmetries, Phys. Rev. D 89 (2014) 104042. Crossref, Web of Science, Google Scholar
- 26. , Higher dimensional static and spherically symmetric solutions in extended Gauss–Bonnet gravity, Symmetry 12(3) (2020) 372. Crossref, Web of Science, Google Scholar
- 27. , New spherically symmetric solutions in -gravity by Noether symmetries, Gen. Relativ. Gravit. 44 (2012) 1881. Crossref, Web of Science, Google Scholar
- 28. , cosmology by Noether’s symmetry, J. Cosmol. Astropart. Phys. 0808 (2008) 016. Crossref, Web of Science, Google Scholar
- 29. , Noether symmetries in Bianchi universes, Int. J. Modern Phys. D 6 (1997) 491. Link, Web of Science, Google Scholar
- 30. , Hamiltonian dynamics and Noether symmetries in extended gravity cosmology, Eur. Phys. J. C 72 (2012) 2068. Crossref, Web of Science, Google Scholar
- 31. , cosmology via Noether symmetry, Eur. Phys. J. C 72 (2012) 2016. Crossref, Web of Science, Google Scholar
- 32. , Variational submanifolds of Euclidean spaces, J. Math. Phys. 59(3) (2018) 032903. Crossref, Web of Science, Google Scholar
- 33. , On a global Lagrangian construction for ordinary variational equations on 2-manifolds, J. Math. Phys. 60(9) (2019) 092902. Crossref, Web of Science, Google Scholar
- 34. ,
First-order variational sequences in field theory , in The Inverse Problem of the Calculus of Variations, Local and Global Theory, ed. D. Zenkov (Atlantis Press, Amsterdam–Beijing–Paris, 2015), pp. 215–284. Crossref, Google Scholar - 35. , Cartan–Lepage forms in geometric mechanics, Internat. J. Non-Linear Mech. 47 (2012) 1154–1160. Crossref, Web of Science, Google Scholar
- 36. , Mechanics, Course of Theoretical Physics, Vol. 1 (Pergamon Press, Oxford, 1969). Google Scholar
- 37. , Superstring Theory. Vol. 1: Introduction,
Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar - 38. , Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology,
Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar - 39. , String Theory. Vol. 1: An Introduction to the Bosonic String (Cambridge University Press, 1998). Google Scholar
- 40. , String Theory. Vol. 2: Superstring Theory and Beyond (Cambridge University Press, 1998). Google Scholar
- 41. , String Theory and M-theory: A Modern Introduction (Cambridge University Press, 2006). Crossref, Google Scholar
- 42. , Modified gravity and cosmology, Phys. Rep. 513 (2012) 1. Crossref, Web of Science, Google Scholar
- 43. , On Kaluza–Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006. Crossref, Web of Science, Google Scholar
- 44. , Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, 2014). Crossref, Google Scholar
- 45. , Loop quantum cosmology: A status report, Class. Quantum. Grav. 28 (2011) 213001. Crossref, Web of Science, Google Scholar
- 46. , Loop quantum gravity, Living Rev. Relativ. 1 (1998) 1. Crossref, Google Scholar
- 47. , Horava–Lifshitz cosmology, Nuclear Phys. B 821 (2009) 467. Crossref, Web of Science, Google Scholar
- 48. , Topological black holes in Horava–Lifshitz gravity, Phys. Rev. D 80 (2009) 024003. Crossref, Web of Science, Google Scholar
- 49. , Horava–Lifshitz gravity: A status report, J. Phys. Conf. Ser. 283 (2011) 012034. Crossref, Google Scholar
- 50. , Horava–Lifshitz cosmology: A review, Class. Quantum Grav. 27 (2010) 223101. Crossref, Web of Science, Google Scholar
- 51. N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, preprint (2002), arXiv:hep-th/0209227. Google Scholar
- 52. , Non-local massive gravity, Phys. Lett. B 727 (2013) 48. Crossref, Web of Science, Google Scholar
- 53. , Super-renormalizable gravity, in The Thirteenth Marcel Grossmann Meeting, eds. R. T. Jantzen, K. Rosquist and R. Ruffini ,
Proc. Conf. MG13 Meeting on General Relativity ,1–7 July 2012 ,Stockholm University, Stockholm, Sweden (World Scientific, 2015). https://doi.org/10.1142/9789814623995_0098 Link, Google Scholar - 54. , theories of gravity, Rev. Modern Phys. 82 (2010) 451. Crossref, Google Scholar
- 55. , theories, Living Rev. Relativ. 13 (2010) 3. Crossref, Web of Science, Google Scholar
- 56. , teleparallel gravity and cosmology, Rep. Progr. Phys. 79(10) (2016) 106901. Crossref, Web of Science, Google Scholar
- 57. , Torsion gravity, Rep. Progr. Phys. 65 (2002) 599. Crossref, Web of Science, Google Scholar
- 58. , Torsion gravity: A reappraisal, Int. J. Modern Phys. D 13 (2004) 2193. Link, Web of Science, Google Scholar
- 59. , Gravitational waves in modified gravity, Int. J. Modern Phys. D 28(5) (2019) 1942002. Link, Web of Science, Google Scholar
- 60. , Extended theories of gravity, Phys. Rep. 509 (2011) 167. Crossref, Web of Science, Google Scholar
- 61. , Extended theories of gravity and their cosmological and astrophysical applications, Gen. Relativ. Gravit. 40 (2008) 357. Crossref, Web of Science, Google Scholar
- 62. A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139]. Google Scholar
- 63. , Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110. Crossref, Web of Science, Google Scholar
- 64. A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 149]. Google Scholar
- 65. , Dynamics of dark energy, Int. J. Modern Phys. D 15 (2006) 1753. Link, Web of Science, Google Scholar
- 66. , The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703. Crossref, Web of Science, Google Scholar
- 67. , Relation between the potential and nonminimal coupling in inflationary cosmology, Phys. Lett. A 177 (1993) 1. Crossref, Web of Science, Google Scholar
- 68. , Noether’s symmetries and exact solutions in flat nonminimally coupled cosmological models, Class. Quantum Grav. 11 (1994) 107. Crossref, Web of Science, Google Scholar
- 69. , Scalar–tensor gravity cosmology: Noether symmetries and analytical solutions, Phys. Rev. D 89(6) (2014) 063532. Crossref, Web of Science, Google Scholar
- 70. , Noether’s symmetries in -dimensional nonminimally coupled cosmologies, Int. J. Modern Phys. D 2 (1993) 463. Link, Web of Science, Google Scholar
- 71. , Invariant solutions and Noether symmetries in hybrid gravity, Phys. Rev. D 91(2) (2015) 023517. Crossref, Web of Science, Google Scholar
- 72. , Noether symmetries in interacting quintessence cosmology, Phys. Dark Univ. 27 (2020) 100444. Crossref, Web of Science, Google Scholar