World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

The Noether–Bessel-Hagen symmetry approach for dynamical systems

    https://doi.org/10.1142/S0219887820502151Cited by:17 (Source: Crossref)

    The Noether–Bessel-Hagen theorem can be considered a natural extension of Noether Theorem to search for symmetries. Here, we develop the approach for dynamical systems introducing the basic foundations of the method. Specifically, we establish the Noether–Bessel-Hagen analysis of mechanical systems where external forces are present. In the second part of the paper, the approach is adopted to select symmetries for a given systems. In particular, we focus on the case of harmonic oscillator as a testbed for the theory, and on a cosmological system derived from scalar–tensor gravity with unknown scalar-field potential V(φ). We show that the shape of potential is selected by the presence of symmetries. The approach results particularly useful as soon as the Lagrangian of a given system is not immediately identifiable or it is not a Lagrangian system.

    AMSC: 70H33, 58E30, 58D19, 53A15

    References

    • 1. S. Capozziello, R. De Ritis, C. Rubano and P. Scudellaro , Noether symmetries in cosmology, Riv. Nuovo Cimento 19(4) (1996) 1. Crossref, Web of ScienceGoogle Scholar
    • 2. K. F. Dialektopoulos and S. Capozziello , Noether symmetries as a geometric criterion to select theories of gravity, Int. J. Geom. Methods Modern Phys. 15(Supp. 01) (2018) 1840007. Link, Web of ScienceGoogle Scholar
    • 3. E. Bessel-Hagen , Uber die Erhaltungssatze der Electrodynamik, Math. Ann. 84 (1921) 258–276. CrossrefGoogle Scholar
    • 4. Y. Kossmann-Schwarzbach , The Noether Theorems (Springer-Verlag, New York, 2011). CrossrefGoogle Scholar
    • 5. D. Krupka , Introduction to Global Variational Geometry, Atlantis Studies in Variational Geometry, Vol. 1 (Atlantis Press, Amsterdam–Beijing–Paris, 2015). CrossrefGoogle Scholar
    • 6. J. Brajerčík and D. Krupka , Variational principles for locally variational forms, J. Math. Phys. 46 (2005) 052903. Crossref, Web of ScienceGoogle Scholar
    • 7. J. Brajerčík and D. Krupka , Cohomology and local variational principles, in Proc. Conf. XV Int. Workshop Geometry and Physics, Puerto de la Cruz, Canary Islands, Spain, 11–16 September 2006, Publ. de la RSME, 2007, pp. 119–124. Google Scholar
    • 8. Z. Urban and J. Brajerčík , The fundamental Lepage form in variational theory for submanifolds, Int. J. Geom. Methods Modern Phys. 15(6) (2018) 1850103. Link, Web of ScienceGoogle Scholar
    • 9. F. Cattafi, M. Palese and E. Winterroth , Variational derivatives in locally Lagrangian field theories and Noether–Bessel-Hagen currents, Int. J. Geom. Methods Modern Phys. 13(8) (2016) 1650067. Link, Web of ScienceGoogle Scholar
    • 10. M. Palese and E. Winterroth , Topological obstructions in Lagrangian field theories, with an application to 3D Chern–Simons gauge theory, J. Math. Phys. 58 (2017) 023502. Crossref, Web of ScienceGoogle Scholar
    • 11. M. Francaviglia, M. Palese and E. Winterroth , Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Methods Modern Phys. 10(1) (2013) 1220024. Link, Web of ScienceGoogle Scholar
    • 12. D. Bashkirov et al., Noether’s second theorem in a general setting: Reducible gauge theories, J. Phys. A: Math. Gen. 38 (2005) 5329. CrossrefGoogle Scholar
    • 13. E. Noether , Invariante Variationsprobleme, Nachr. Konig. Gessell. Wissen. Gottingen, Math.-Phys. Kl. 1918 (1918) 235–257. Google Scholar
    • 14. D. Krupka , Invariant variational structures on fibered manifolds, Int. J. Geom. Methods Modern Phys. 12 (2015) 1550020. Link, Web of ScienceGoogle Scholar
    • 15. A. Trautman, Invariance of Lagrangian systems, in General Relativity, Papers in Honour of J. L. Synge (Oxford, Clarendon Press, 1972), pp. 85–99. Google Scholar
    • 16. A. Trautman , Noether equations and conservation laws, Comm. Math. Phys. 6 (1967) 248–261. CrossrefGoogle Scholar
    • 17. D. Krupka , A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance, J. Math. Anal. Appl. 49 (1975) 469–476. Crossref, Web of ScienceGoogle Scholar
    • 18. G. Sardanashvily , Noether’s Theorems, Applications in Mechanics and Field Theory, Atlantis Studies in Variational Geometry, Vol. 3 (Atlantis Press, Amsterdam, 2016). CrossrefGoogle Scholar
    • 19. P. J. Olver , Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Vol. 107 (Springer-Verlag, New York, 1986). CrossrefGoogle Scholar
    • 20. G. W. Bluman and S. Kumei , Symmetries and Differential Equations (Springer-Verlag, New York, 1989). CrossrefGoogle Scholar
    • 21. D. Krupka , Variational forces, Lepage Research Institute Library 6 (2018) 1–38. Google Scholar
    • 22. N. Chien, T. Honein and G. Herrmann , Dissipative systems, conservation laws and symmetries, Internat. J. Solids Structures 33(20–22) (1996) 2959–2968. Crossref, Web of ScienceGoogle Scholar
    • 23. T. Honein, N. Chien and G. Herrmann , On conservation laws for dissipative systems, Phys. Lett. A 155 (1991) 223–224. Crossref, Web of ScienceGoogle Scholar
    • 24. S. Capozziello, A. Stabile and A. Troisi , Spherically symmetric solutions in f(R)-gravity via Noether Symmetry Approach, Class. Quantum Grav. 24 (2007) 2153. Crossref, Web of ScienceGoogle Scholar
    • 25. A. Paliathanasis, S. Basilakos, E. N. Saridakis, S. Capozziello, K. Atazadeh, F. Darabi and M. Tsamparlis , New Schwarzschild-like solutions in f(T) gravity through Noether symmetries, Phys. Rev. D 89 (2014) 104042. Crossref, Web of ScienceGoogle Scholar
    • 26. F. Bajardi, K. F. Dialektopoulos and S. Capozziello , Higher dimensional static and spherically symmetric solutions in extended Gauss–Bonnet gravity, Symmetry 12(3) (2020) 372. Crossref, Web of ScienceGoogle Scholar
    • 27. S. Capozziello, N. Frusciante and D. Vernieri , New spherically symmetric solutions in f(R)-gravity by Noether symmetries, Gen. Relativ. Gravit. 44 (2012) 1881. Crossref, Web of ScienceGoogle Scholar
    • 28. S. Capozziello and A. De Felice , f(R) cosmology by Noether’s symmetry, J. Cosmol. Astropart. Phys. 0808 (2008) 016. Crossref, Web of ScienceGoogle Scholar
    • 29. S. Capozziello, G. Marmo, C. Rubano and P. Scudellaro , Noether symmetries in Bianchi universes, Int. J. Modern Phys. D 6 (1997) 491. Link, Web of ScienceGoogle Scholar
    • 30. S. Capozziello, M. De Laurentis and S. D. Odintsov , Hamiltonian dynamics and Noether symmetries in extended gravity cosmology, Eur. Phys. J. C 72 (2012) 2068. Crossref, Web of ScienceGoogle Scholar
    • 31. K. Atazadeh and F. Darabi , f(T) cosmology via Noether symmetry, Eur. Phys. J. C 72 (2012) 2016. Crossref, Web of ScienceGoogle Scholar
    • 32. D. Krupka, Z. Urban and J. Volná , Variational submanifolds of Euclidean spaces, J. Math. Phys. 59(3) (2018) 032903. Crossref, Web of ScienceGoogle Scholar
    • 33. Z. Urban and J. Volná , On a global Lagrangian construction for ordinary variational equations on 2-manifolds, J. Math. Phys. 60(9) (2019) 092902. Crossref, Web of ScienceGoogle Scholar
    • 34. J. Volná and Z. Urban , First-order variational sequences in field theory, in The Inverse Problem of the Calculus of Variations, Local and Global Theory, ed. D. Zenkov (Atlantis Press, Amsterdam–Beijing–Paris, 2015), pp. 215–284. CrossrefGoogle Scholar
    • 35. D. Krupka, O. Krupková and D. Saunders , Cartan–Lepage forms in geometric mechanics, Internat. J. Non-Linear Mech. 47 (2012) 1154–1160. Crossref, Web of ScienceGoogle Scholar
    • 36. L. D. Landau and E. M. Lifshitz , Mechanics, Course of Theoretical Physics, Vol. 1 (Pergamon Press, Oxford, 1969). Google Scholar
    • 37. M. B. Green, J. H. Schwarz and E. Witten , Superstring Theory. Vol. 1: Introduction, Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar
    • 38. M. B. Green, J. H. Schwarz and E. Witten , Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar
    • 39. J. Polchinski , String Theory. Vol. 1: An Introduction to the Bosonic String (Cambridge University Press, 1998). Google Scholar
    • 40. J. Polchinski , String Theory. Vol. 2: Superstring Theory and Beyond (Cambridge University Press, 1998). Google Scholar
    • 41. K. Becker, M. Becker and J. H. Schwarz , String Theory and M-theory: A Modern Introduction (Cambridge University Press, 2006). CrossrefGoogle Scholar
    • 42. T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis , Modified gravity and cosmology, Phys. Rep. 513 (2012) 1. Crossref, Web of ScienceGoogle Scholar
    • 43. T. Han, J. D. Lykken and R. J. Zhang , On Kaluza–Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006. Crossref, Web of ScienceGoogle Scholar
    • 44. C. Rovelli and F. Vidotto , Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, 2014). CrossrefGoogle Scholar
    • 45. A. Ashtekar and P. Singh , Loop quantum cosmology: A status report, Class. Quantum. Grav. 28 (2011) 213001. Crossref, Web of ScienceGoogle Scholar
    • 46. C. Rovelli , Loop quantum gravity, Living Rev. Relativ. 1 (1998) 1. CrossrefGoogle Scholar
    • 47. E. Kiritsis and G. Kofinas , Horava–Lifshitz cosmology, Nuclear Phys. B 821 (2009) 467. Crossref, Web of ScienceGoogle Scholar
    • 48. R. G. Cai, L. M. Cao and N. Ohta , Topological black holes in Horava–Lifshitz gravity, Phys. Rev. D 80 (2009) 024003. Crossref, Web of ScienceGoogle Scholar
    • 49. T. P. Sotiriou , Horava–Lifshitz gravity: A status report, J. Phys. Conf. Ser. 283 (2011) 012034. CrossrefGoogle Scholar
    • 50. S. Mukohyama , Horava–Lifshitz cosmology: A review, Class. Quantum Grav. 27 (2010) 223101. Crossref, Web of ScienceGoogle Scholar
    • 51. N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, preprint (2002), arXiv:hep-th/0209227. Google Scholar
    • 52. L. Modesto and S. Tsujikawa , Non-local massive gravity, Phys. Lett. B 727 (2013) 48. Crossref, Web of ScienceGoogle Scholar
    • 53. L. Modesto , Super-renormalizable gravity, in The Thirteenth Marcel Grossmann Meeting, eds. R. T. Jantzen, K. Rosquist and R. Ruffini , Proc. Conf. MG13 Meeting on General Relativity, 1–7 July 2012, Stockholm University, Stockholm, Sweden (World Scientific, 2015). https://doi.org/10.1142/9789814623995_0098 LinkGoogle Scholar
    • 54. T. P. Sotiriou and V. Faraoni , f(R) theories of gravity, Rev. Modern Phys. 82 (2010) 451. CrossrefGoogle Scholar
    • 55. A. De Felice and S. Tsujikawa , f(R) theories, Living Rev. Relativ. 13 (2010) 3. Crossref, Web of ScienceGoogle Scholar
    • 56. Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis , f(T) teleparallel gravity and cosmology, Rep. Progr. Phys. 79(10) (2016) 106901. Crossref, Web of ScienceGoogle Scholar
    • 57. R. T. Hammond , Torsion gravity, Rep. Progr. Phys. 65 (2002) 599. Crossref, Web of ScienceGoogle Scholar
    • 58. H. I. Arcos and J. G. Pereira , Torsion gravity: A reappraisal, Int. J. Modern Phys. D 13 (2004) 2193. Link, Web of ScienceGoogle Scholar
    • 59. S. Capozziello and F. Bajardi , Gravitational waves in modified gravity, Int. J. Modern Phys. D 28(5) (2019) 1942002. Link, Web of ScienceGoogle Scholar
    • 60. S. Capozziello and M. De Laurentis , Extended theories of gravity, Phys. Rep. 509 (2011) 167. Crossref, Web of ScienceGoogle Scholar
    • 61. S. Capozziello and M. Francaviglia , Extended theories of gravity and their cosmological and astrophysical applications, Gen. Relativ. Gravit. 40 (2008) 357. Crossref, Web of ScienceGoogle Scholar
    • 62. A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139]. Google Scholar
    • 63. A. H. Guth and S. Y. Pi , Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110. Crossref, Web of ScienceGoogle Scholar
    • 64. A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 149]. Google Scholar
    • 65. E. J. Copeland, M. Sami and S. Tsujikawa , Dynamics of dark energy, Int. J. Modern Phys. D 15 (2006) 1753. Link, Web of ScienceGoogle Scholar
    • 66. F. L. Bezrukov and M. Shaposhnikov , The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703. Crossref, Web of ScienceGoogle Scholar
    • 67. S. Capozziello and R. de Ritis , Relation between the potential and nonminimal coupling in inflationary cosmology, Phys. Lett. A 177 (1993) 1. Crossref, Web of ScienceGoogle Scholar
    • 68. S. Capozziello and R. de Ritis , Noether’s symmetries and exact solutions in flat nonminimally coupled cosmological models, Class. Quantum Grav. 11 (1994) 107. Crossref, Web of ScienceGoogle Scholar
    • 69. A. Paliathanasis, M. Tsamparlis, S. Basilakos and S. Capozziello , Scalar–tensor gravity cosmology: Noether symmetries and analytical solutions, Phys. Rev. D 89(6) (2014) 063532. Crossref, Web of ScienceGoogle Scholar
    • 70. S. Capozziello, R. de Ritis and P. Scudellaro , Noether’s symmetries in (n + 1)-dimensional nonminimally coupled cosmologies, Int. J. Modern Phys. D 2 (1993) 463. Link, Web of ScienceGoogle Scholar
    • 71. A. Borowiec, S. Capozziello, M. De Laurentis, F. S. N. Lobo, A. Paliathanasis, M. Paolella and A. Wojnar , Invariant solutions and Noether symmetries in hybrid gravity, Phys. Rev. D 91(2) (2015) 023517. Crossref, Web of ScienceGoogle Scholar
    • 72. E. Piedipalumbo, M. De Laurentis and S. Capozziello , Noether symmetries in interacting quintessence cosmology, Phys. Dark Univ. 27 (2020) 100444. Crossref, Web of ScienceGoogle Scholar