The Noether–Bessel-Hagen symmetry approach for dynamical systems
Abstract
The Noether–Bessel-Hagen theorem can be considered a natural extension of Noether Theorem to search for symmetries. Here, we develop the approach for dynamical systems introducing the basic foundations of the method. Specifically, we establish the Noether–Bessel-Hagen analysis of mechanical systems where external forces are present. In the second part of the paper, the approach is adopted to select symmetries for a given systems. In particular, we focus on the case of harmonic oscillator as a testbed for the theory, and on a cosmological system derived from scalar–tensor gravity with unknown scalar-field potential . We show that the shape of potential is selected by the presence of symmetries. The approach results particularly useful as soon as the Lagrangian of a given system is not immediately identifiable or it is not a Lagrangian system.
References
- 1. , Noether symmetries in cosmology, Riv. Nuovo Cimento 19(4) (1996) 1. Crossref, ISI, Google Scholar
- 2. , Noether symmetries as a geometric criterion to select theories of gravity, Int. J. Geom. Methods Modern Phys. 15(Supp. 01) (2018) 1840007. Link, ISI, Google Scholar
- 3. , Uber die Erhaltungssatze der Electrodynamik, Math. Ann. 84 (1921) 258–276. Crossref, Google Scholar
- 4. , The Noether Theorems (Springer-Verlag, New York, 2011). Crossref, Google Scholar
- 5. , Introduction to Global Variational Geometry,
Atlantis Studies in Variational Geometry , Vol. 1 (Atlantis Press, Amsterdam–Beijing–Paris, 2015). Crossref, Google Scholar - 6. , Variational principles for locally variational forms, J. Math. Phys. 46 (2005) 052903. Crossref, ISI, Google Scholar
- 7. , Cohomology and local variational principles, in Proc. Conf. XV Int. Workshop Geometry and Physics,
Puerto de la Cruz, Canary Islands, Spain ,11–16 September 2006 , Publ. de la RSME, 2007, pp. 119–124. Google Scholar - 8. , The fundamental Lepage form in variational theory for submanifolds, Int. J. Geom. Methods Modern Phys. 15(6) (2018) 1850103. Link, ISI, Google Scholar
- 9. , Variational derivatives in locally Lagrangian field theories and Noether–Bessel-Hagen currents, Int. J. Geom. Methods Modern Phys. 13(8) (2016) 1650067. Link, ISI, Google Scholar
- 10. , Topological obstructions in Lagrangian field theories, with an application to 3D Chern–Simons gauge theory, J. Math. Phys. 58 (2017) 023502. Crossref, ISI, Google Scholar
- 11. , Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Methods Modern Phys. 10(1) (2013) 1220024. Link, ISI, Google Scholar
- 12. , Noether’s second theorem in a general setting: Reducible gauge theories, J. Phys. A: Math. Gen. 38 (2005) 5329. Crossref, Google Scholar
- 13. , Invariante Variationsprobleme, Nachr. Konig. Gessell. Wissen. Gottingen, Math.-Phys. Kl. 1918 (1918) 235–257. Google Scholar
- 14. , Invariant variational structures on fibered manifolds, Int. J. Geom. Methods Modern Phys. 12 (2015) 1550020. Link, ISI, Google Scholar
- 15. A. Trautman, Invariance of Lagrangian systems, in General Relativity, Papers in Honour of J. L. Synge (Oxford, Clarendon Press, 1972), pp. 85–99. Google Scholar
- 16. , Noether equations and conservation laws, Comm. Math. Phys. 6 (1967) 248–261. Crossref, Google Scholar
- 17. , A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance, J. Math. Anal. Appl. 49 (1975) 469–476. Crossref, ISI, Google Scholar
- 18. , Noether’s Theorems, Applications in Mechanics and Field Theory,
Atlantis Studies in Variational Geometry , Vol. 3 (Atlantis Press, Amsterdam, 2016). Crossref, Google Scholar - 19. , Applications of Lie Groups to Differential Equations,
Graduate Texts in Mathematics , Vol. 107 (Springer-Verlag, New York, 1986). Crossref, Google Scholar - 20. , Symmetries and Differential Equations (Springer-Verlag, New York, 1989). Crossref, Google Scholar
- 21. , Variational forces, Lepage Research Institute Library 6 (2018) 1–38. Google Scholar
- 22. , Dissipative systems, conservation laws and symmetries, Internat. J. Solids Structures 33(20–22) (1996) 2959–2968. Crossref, ISI, Google Scholar
- 23. , On conservation laws for dissipative systems, Phys. Lett. A 155 (1991) 223–224. Crossref, ISI, Google Scholar
- 24. , Spherically symmetric solutions in -gravity via Noether Symmetry Approach, Class. Quantum Grav. 24 (2007) 2153. Crossref, ISI, Google Scholar
- 25. , New Schwarzschild-like solutions in gravity through Noether symmetries, Phys. Rev. D 89 (2014) 104042. Crossref, ISI, Google Scholar
- 26. , Higher dimensional static and spherically symmetric solutions in extended Gauss–Bonnet gravity, Symmetry 12(3) (2020) 372. Crossref, ISI, Google Scholar
- 27. , New spherically symmetric solutions in -gravity by Noether symmetries, Gen. Relativ. Gravit. 44 (2012) 1881. Crossref, ISI, Google Scholar
- 28. , cosmology by Noether’s symmetry, J. Cosmol. Astropart. Phys. 0808 (2008) 016. Crossref, ISI, Google Scholar
- 29. , Noether symmetries in Bianchi universes, Int. J. Modern Phys. D 6 (1997) 491. Link, ISI, Google Scholar
- 30. , Hamiltonian dynamics and Noether symmetries in extended gravity cosmology, Eur. Phys. J. C 72 (2012) 2068. Crossref, ISI, Google Scholar
- 31. , cosmology via Noether symmetry, Eur. Phys. J. C 72 (2012) 2016. Crossref, ISI, Google Scholar
- 32. , Variational submanifolds of Euclidean spaces, J. Math. Phys. 59(3) (2018) 032903. Crossref, ISI, Google Scholar
- 33. , On a global Lagrangian construction for ordinary variational equations on 2-manifolds, J. Math. Phys. 60(9) (2019) 092902. Crossref, ISI, Google Scholar
- 34. ,
First-order variational sequences in field theory , in The Inverse Problem of the Calculus of Variations, Local and Global Theory, ed. D. Zenkov (Atlantis Press, Amsterdam–Beijing–Paris, 2015), pp. 215–284. Crossref, Google Scholar - 35. , Cartan–Lepage forms in geometric mechanics, Internat. J. Non-Linear Mech. 47 (2012) 1154–1160. Crossref, ISI, Google Scholar
- 36. , Mechanics, Course of Theoretical Physics, Vol. 1 (Pergamon Press, Oxford, 1969). Google Scholar
- 37. , Superstring Theory. Vol. 1: Introduction,
Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar - 38. , Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology,
Cambridge Monographs On Mathematical Physics (Cambridge University Press, 1987). Google Scholar - 39. , String Theory. Vol. 1: An Introduction to the Bosonic String (Cambridge University Press, 1998). Google Scholar
- 40. , String Theory. Vol. 2: Superstring Theory and Beyond (Cambridge University Press, 1998). Google Scholar
- 41. , String Theory and M-theory: A Modern Introduction (Cambridge University Press, 2006). Crossref, Google Scholar
- 42. , Modified gravity and cosmology, Phys. Rep. 513 (2012) 1. Crossref, ISI, Google Scholar
- 43. , On Kaluza–Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006. Crossref, ISI, Google Scholar
- 44. , Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, 2014). Crossref, Google Scholar
- 45. , Loop quantum cosmology: A status report, Class. Quantum. Grav. 28 (2011) 213001. Crossref, ISI, Google Scholar
- 46. , Loop quantum gravity, Living Rev. Relativ. 1 (1998) 1. Crossref, Google Scholar
- 47. , Horava–Lifshitz cosmology, Nuclear Phys. B 821 (2009) 467. Crossref, ISI, Google Scholar
- 48. , Topological black holes in Horava–Lifshitz gravity, Phys. Rev. D 80 (2009) 024003. Crossref, ISI, Google Scholar
- 49. , Horava–Lifshitz gravity: A status report, J. Phys. Conf. Ser. 283 (2011) 012034. Crossref, Google Scholar
- 50. , Horava–Lifshitz cosmology: A review, Class. Quantum Grav. 27 (2010) 223101. Crossref, ISI, Google Scholar
- 51. N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, preprint (2002), arXiv:hep-th/0209227. Google Scholar
- 52. , Non-local massive gravity, Phys. Lett. B 727 (2013) 48. Crossref, ISI, Google Scholar
- 53. , Super-renormalizable gravity, in The Thirteenth Marcel Grossmann Meeting, eds. R. T. JantzenK. RosquistR. Ruffini,
Proc. Conf. MG13 Meeting on General Relativity ,1–7 July 2012 ,Stockholm University, Stockholm, Sweden (World Scientific, 2015). https://doi.org/10.1142/9789814623995_0098 Link, Google Scholar - 54. , theories of gravity, Rev. Modern Phys. 82 (2010) 451. Crossref, Google Scholar
- 55. , theories, Living Rev. Relativ. 13 (2010) 3. Crossref, ISI, Google Scholar
- 56. , teleparallel gravity and cosmology, Rep. Progr. Phys. 79(10) (2016) 106901. Crossref, ISI, Google Scholar
- 57. , Torsion gravity, Rep. Progr. Phys. 65 (2002) 599. Crossref, ISI, Google Scholar
- 58. , Torsion gravity: A reappraisal, Int. J. Modern Phys. D 13 (2004) 2193. Link, ISI, Google Scholar
- 59. , Gravitational waves in modified gravity, Int. J. Modern Phys. D 28(5) (2019) 1942002. Link, ISI, Google Scholar
- 60. , Extended theories of gravity, Phys. Rep. 509 (2011) 167. Crossref, ISI, Google Scholar
- 61. , Extended theories of gravity and their cosmological and astrophysical applications, Gen. Relativ. Gravit. 40 (2008) 357. Crossref, ISI, Google Scholar
- 62. A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139]. Google Scholar
- 63. , Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110. Crossref, ISI, Google Scholar
- 64. A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389. [Adv. Ser. Astrophys. Cosmol. 3 (1987) 149]. Google Scholar
- 65. , Dynamics of dark energy, Int. J. Modern Phys. D 15 (2006) 1753. Link, ISI, Google Scholar
- 66. , The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703. Crossref, ISI, Google Scholar
- 67. , Relation between the potential and nonminimal coupling in inflationary cosmology, Phys. Lett. A 177 (1993) 1. Crossref, ISI, Google Scholar
- 68. , Noether’s symmetries and exact solutions in flat nonminimally coupled cosmological models, Class. Quantum Grav. 11 (1994) 107. Crossref, ISI, Google Scholar
- 69. , Scalar–tensor gravity cosmology: Noether symmetries and analytical solutions, Phys. Rev. D 89(6) (2014) 063532. Crossref, ISI, Google Scholar
- 70. , Noether’s symmetries in -dimensional nonminimally coupled cosmologies, Int. J. Modern Phys. D 2 (1993) 463. Link, ISI, Google Scholar
- 71. , Invariant solutions and Noether symmetries in hybrid gravity, Phys. Rev. D 91(2) (2015) 023517. Crossref, ISI, Google Scholar
- 72. , Noether symmetries in interacting quintessence cosmology, Phys. Dark Univ. 27 (2020) 100444. Crossref, ISI, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out new Mathematical Physics books in our Mathematics 2021 catalogue |