Classical perspectives on the Newton–Wigner position observable
Abstract
This paper deals with the Newton–Wigner position observable for Poincaré-invariant classical systems. We prove an existence and uniqueness theorem for elementary systems that parallels the well-known Newton–Wigner theorem in the quantum context. We also discuss and justify the geometric interpretation of the Newton–Wigner position as “center of spin”, already proposed by Fleming in 1965 again in the quantum context.
References
- 1. , An interpretation of Dirac’s theory of the electron, Proc. Natl. Acad. Sci. U. S. A. 14 (1928) 553–559. Google Scholar
- 2. E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik, in Erwin Schrödinger Collected Papers Volume 3: Contributions to Quantum Theory (Verlag der Österreichische Akademie der Wissenschaften (Wien) and Friedrich Vieweg & Sohn (Braunschweig/Wiesbaden), 1984), pp. 357–368, originally published by Preussische Akademie der Wissenschaften, physikalisch-mathematische Klasse, 1930, Vol. XXIV, pp. 417–428. Google Scholar
- 3. E. Schrödinger, Zur Quantendynamik des Elektrons, in Erwin Schrödinger Collected Papers Volume 3: Contributions to Quantum Theory (Verlag der Österreichische Akademie der Wissenschaften (Wien) and Friedrich Vieweg & Sohn (Braunschweig/Wiesbaden), 1984), pp. 369–379, originally published by Preussische Akademie der Wissenschaften, physikalisch-mathematische Klasse, 1931, Vol. III, pp. 62–72. Google Scholar
- 4. , Localized states for elementary systems, Rev. Mod. Phys. 21 (1949) 400–406. Web of Science, Google Scholar
- 5. , On the localizability of quantum mechanical systems, Rev. Mod. Phys. 34 (1962) 845–872. Web of Science, Google Scholar
- 6. , Geometry of Quantum Theory (Springer, New York, 1985). Google Scholar
- 7. , Anti-locality of certain Lorentz-invariant operators, J. Math. Mech. 14 (1965) 629–638. Web of Science, Google Scholar
- 8. , Remark on causality and particle localization, Phys. Rev. D 10 (1974) 3320–3321. Web of Science, Google Scholar
- 9. , On Newton–Wigner localization and superluminal propagation speeds, Ann. Phys. (N. Y.) 137 (1981) 33–43. Web of Science, Google Scholar
- 10. , Configuration space methods in relativistic quantum field theory. I, Phys. Rev. 98 (1955) 812–837. Web of Science, Google Scholar
- 11. ,
Strange positions , in From Physics to Philosophy, eds. J. Butterfield and C. Pagonis (Cambridge University Press, Cambridge, 1999), pp. 108–165. Google Scholar - 12. , Reeh-Schlieder meets Newton-Wigner, Philos. Sci. 67 (2000) S495–S515, Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part II: Symposia Papers. Web of Science, Google Scholar
- 13. , Reeh-Schlieder defeats Newton-Wigner: On alternative localization schemes in relativistic quantum field theory, Philos. Sci. 68 (2001) 111–133. Web of Science, Google Scholar
- 14. , The mass-center in the restricted theory of relativity and its connexion with the quantum theory of elementary particles, Proc. R. Soc. A 195 (1948) 62–81. Google Scholar
- 15. , Covariant position operators, spin, and locality, Phys. Rev. 137 (1965) B188–B197. Web of Science, Google Scholar
- 16. , Canonical formulation of spin in general relativity, Ann. Phys. (Berl.) 523 (2011) 296–353. Web of Science, Google Scholar
- 17. , Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Living Rev. Relativ. 21 (2018) 7, https://doi.org/10.1007/s41114-018-0016-5 Web of Science, Google Scholar
- 18. , Equations of Motion in Relativistic Gravity,
Fundamental Theories of Physics , Vol. 179 (Springer, Cham, 2015). Google Scholar - 19. , Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition, Phys. Rev. D 97 (2018) 084023. Web of Science, Google Scholar
- 20. , Classical relativistic particles, Commun. Math. Phys. 21 (1971a) 139–149. Web of Science, Google Scholar
- 21. , Classical Lorentz invariant particles, J. Math. Phys. 12 (1971b) 2415–2422. Web of Science, Google Scholar
- 22. , Foundations of Mechanics, 2nd edn. (AMS Chelsea Publishing, 1978). Google Scholar
- 23. , Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989). Google Scholar
- 24. ,
Energy-momentum tensors and motion in special relativity , in Equations of Motion in Relativistic Gravity,Fundamental Theories of Physics , Vol. 179, eds. D. Puetzfeld, C. Lämmerzahl and B. Schutz (Springer, Cham, 2015), Chap. 3, pp. 121–163. Google Scholar - 25. , Representations of the Galilei group, Il Nuovo Cimento 9 (1952) 705–718. Web of Science, Google Scholar
- 26. , Geometric Quantization (SpringerClarendon Press, Oxford, 1980). Google Scholar
- 27. , General Relativity (Springer, Dordrecht, 2013). Google Scholar
- 28. , A manifestly covariant description of arbitrary dynamical variables in relativistic quantum mechanics, J. Math. Phys. 7 (1966) 1959–1981. Web of Science, Google Scholar
- 29. , Laue’s theorem revisited: Energy–momentum tensors, symmetries, and the habitat of globally conserved quantities, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850182. Link, Web of Science, Google Scholar
- 30. , Spinning test-particles in general relativity. II, Proc. R. Soc. A 209 (1951) 259–268. Google Scholar
- 31. , Motion of multipole particles in general relativity theory, Acta Phys. Pol. 18 (1959) 393. Google Scholar
- 32. , Dynamics of extended bodies in general relativity. I. Momentum and angular momentum, Proc. R. Soc. A 314 (1970) 499–527. Google Scholar
- 33. , Die Elektrodynamik des rotierenden Elektrons, Z. Phys. 37 (1926) 243–262. Google Scholar
- 34. , Neue Mechanik materieller Systeme, Acta Phys. Pol. 6 (1937) 163–200. Google Scholar
- 35. , New mechanics of material systems, Gen. Relativ. Gravit. 42 (2010) 1011–1048, republication of original paper [34] as “Golden Oldie”. Web of Science, Google Scholar
- 36. , On the physical significance of the Riemann tensor, Acta Phys. Pol. 15 (1956) 389–405. Google Scholar
- 37. , On the physical significance of the Riemann tensor, Gen. Relativ. Gravit. 41 (2009) 1215–1232, republication of original article [36] as “Oldie”. Web of Science, Google Scholar
- 38. C. Møller, On the definition of the center of gravity of an arbitrary closed system in the theory of relativity, https://www.stp.dias.ie/Communications/DIAS-STP-Communications-005-Moller.pdf Commun. Dublin Inst. Adv. Stud. series A 5 (1949) 1–42. Google Scholar
- 39. , On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939) 149–204. Google Scholar
- 40. , Space-time and degrees of freedom of the elementary particle, Commun. Math. Phys. 5 (1967) 97–105. Google Scholar
- 41. , ATLAS of Finite Groups (Clarendon Press, Oxford, 1985). Google Scholar
- 42. , Possible kinematics, J. Math. Phys. 9 (1968) 97–105. Web of Science, Google Scholar
- 43. , Simple derivation of the Newton–Wigner position operator, J. Math. Phys. 21 (1980) 2028–2032. Web of Science, Google Scholar
- 44. , Next-to-leading order gravitational spin(1)-spin(2) dynamics in hamiltonian form, Phys. Rev. D 77 (2008) 081501(R). Web of Science, Google Scholar
- 45. , ADM canonical formalism for gravitating spinning objects, Phys. Rev. D 77 (2008) 104018. Web of Science, Google Scholar
- 46. , Spin-squared hamiltonian of next-to-leading order gravitational interaction, Phys. Rev. D 78 (2008) 101503(R). Web of Science, Google Scholar
- 47. M. Levi, S. Mougiakakos and M. Vieira, Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order, (2019) arXiv:1912.06276 [hep-th]. Google Scholar
- 48. A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff and J. Vines, Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios, (2020), arXiv:2003.11391 [gr-qc]. Google Scholar