World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Classical perspectives on the Newton–Wigner position observable

    https://doi.org/10.1142/S0219887820501765Cited by:5 (Source: Crossref)

    This paper deals with the Newton–Wigner position observable for Poincaré-invariant classical systems. We prove an existence and uniqueness theorem for elementary systems that parallels the well-known Newton–Wigner theorem in the quantum context. We also discuss and justify the geometric interpretation of the Newton–Wigner position as “center of spin”, already proposed by Fleming in 1965 again in the quantum context.

    AMSC: 37J39, 70H33, 83A05

    References

    • 1. G. Breit , An interpretation of Dirac’s theory of the electron, Proc. Natl. Acad. Sci. U. S. A. 14 (1928) 553–559. Google Scholar
    • 2. E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik, in Erwin Schrödinger Collected Papers Volume 3: Contributions to Quantum Theory (Verlag der Österreichische Akademie der Wissenschaften (Wien) and Friedrich Vieweg & Sohn (Braunschweig/Wiesbaden), 1984), pp. 357–368, originally published by Preussische Akademie der Wissenschaften, physikalisch-mathematische Klasse, 1930, Vol. XXIV, pp. 417–428. Google Scholar
    • 3. E. Schrödinger, Zur Quantendynamik des Elektrons, in Erwin Schrödinger Collected Papers Volume 3: Contributions to Quantum Theory (Verlag der Österreichische Akademie der Wissenschaften (Wien) and Friedrich Vieweg & Sohn (Braunschweig/Wiesbaden), 1984), pp. 369–379, originally published by Preussische Akademie der Wissenschaften, physikalisch-mathematische Klasse, 1931, Vol. III, pp. 62–72. Google Scholar
    • 4. T. D. Newton and E. P. Wigner , Localized states for elementary systems, Rev. Mod. Phys. 21 (1949) 400–406. Web of ScienceGoogle Scholar
    • 5. A. S. Wightman , On the localizability of quantum mechanical systems, Rev. Mod. Phys. 34 (1962) 845–872. Web of ScienceGoogle Scholar
    • 6. V. S. Varadarajan , Geometry of Quantum Theory (Springer, New York, 1985). Google Scholar
    • 7. I. E. Segal and R. W. Goodman , Anti-locality of certain Lorentz-invariant operators, J. Math. Mech. 14 (1965) 629–638. Web of ScienceGoogle Scholar
    • 8. G. C. Hegerfeldt , Remark on causality and particle localization, Phys. Rev. D 10 (1974) 3320–3321. Web of ScienceGoogle Scholar
    • 9. S. N. M. Ruijsenaars , On Newton–Wigner localization and superluminal propagation speeds, Ann. Phys. (N. Y.) 137 (1981) 33–43. Web of ScienceGoogle Scholar
    • 10. A. S. Wightman and S. S. Schweber , Configuration space methods in relativistic quantum field theory. I, Phys. Rev. 98 (1955) 812–837. Web of ScienceGoogle Scholar
    • 11. G. N. Fleming and J. Butterfield , Strange positions, in From Physics to Philosophy, eds. J. Butterfield and C. Pagonis (Cambridge University Press, Cambridge, 1999), pp. 108–165. Google Scholar
    • 12. G. N. Fleming , Reeh-Schlieder meets Newton-Wigner, Philos. Sci. 67 (2000) S495–S515, Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part II: Symposia Papers. Web of ScienceGoogle Scholar
    • 13. H. Halvorson , Reeh-Schlieder defeats Newton-Wigner: On alternative localization schemes in relativistic quantum field theory, Philos. Sci. 68 (2001) 111–133. Web of ScienceGoogle Scholar
    • 14. M. H. L. Pryce , The mass-center in the restricted theory of relativity and its connexion with the quantum theory of elementary particles, Proc. R. Soc. A 195 (1948) 62–81. Google Scholar
    • 15. G. N. Fleming , Covariant position operators, spin, and locality, Phys. Rev. 137 (1965) B188–B197. Web of ScienceGoogle Scholar
    • 16. J. Steinhoff , Canonical formulation of spin in general relativity, Ann. Phys. (Berl.) 523 (2011) 296–353. Web of ScienceGoogle Scholar
    • 17. G. Schäfer and P. Jaranowski , Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Living Rev. Relativ. 21 (2018) 7, https://doi.org/10.1007/s41114-018-0016-5 Web of ScienceGoogle Scholar
    • 18. D. Puetzfeld, C. Lämmerzahl and B. Schutz , Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics, Vol. 179 (Springer, Cham, 2015). Google Scholar
    • 19. L. F. O. Costa, G. Lukes-Gerakopolous and O. Semerák , Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition, Phys. Rev. D 97 (2018) 084023. Web of ScienceGoogle Scholar
    • 20. R. Arens , Classical relativistic particles, Commun. Math. Phys. 21 (1971a) 139–149. Web of ScienceGoogle Scholar
    • 21. R. Arens , Classical Lorentz invariant particles, J. Math. Phys. 12 (1971b) 2415–2422. Web of ScienceGoogle Scholar
    • 22. R. Abraham and J. E. Marsden , Foundations of Mechanics, 2nd edn. (AMS Chelsea Publishing, 1978). Google Scholar
    • 23. V. I. Arnold , Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989). Google Scholar
    • 24. D. Giulini , Energy-momentum tensors and motion in special relativity, in Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics, Vol. 179, eds. D. Puetzfeld, C. Lämmerzahl and B. Schutz (Springer, Cham, 2015), Chap. 3, pp. 121–163. Google Scholar
    • 25. E. Inönü and E. P. Wigner , Representations of the Galilei group, Il Nuovo Cimento 9 (1952) 705–718. Web of ScienceGoogle Scholar
    • 26. N. Woodhouse , Geometric Quantization (SpringerClarendon Press, Oxford, 1980). Google Scholar
    • 27. N. Straumann , General Relativity (Springer, Dordrecht, 2013). Google Scholar
    • 28. G. N. Fleming , A manifestly covariant description of arbitrary dynamical variables in relativistic quantum mechanics, J. Math. Phys. 7 (1966) 1959–1981. Web of ScienceGoogle Scholar
    • 29. D. Giulini , Laue’s theorem revisited: Energy–momentum tensors, symmetries, and the habitat of globally conserved quantities, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850182. Link, Web of ScienceGoogle Scholar
    • 30. E. Corinaldesi and A. Papapetrou , Spinning test-particles in general relativity. II, Proc. R. Soc. A 209 (1951) 259–268. Google Scholar
    • 31. W. M. Tulczyjew , Motion of multipole particles in general relativity theory, Acta Phys. Pol. 18 (1959) 393. Google Scholar
    • 32. G. Dixon , Dynamics of extended bodies in general relativity. I. Momentum and angular momentum, Proc. R. Soc. A 314 (1970) 499–527. Google Scholar
    • 33. J. Frenkel , Die Elektrodynamik des rotierenden Elektrons, Z. Phys. 37 (1926) 243–262. Google Scholar
    • 34. M. Mathisson , Neue Mechanik materieller Systeme, Acta Phys. Pol. 6 (1937) 163–200. Google Scholar
    • 35. M. Mathisson , New mechanics of material systems, Gen. Relativ. Gravit. 42 (2010) 1011–1048, republication of original paper [34] as “Golden Oldie”. Web of ScienceGoogle Scholar
    • 36. F. A. E. Pirani , On the physical significance of the Riemann tensor, Acta Phys. Pol. 15 (1956) 389–405. Google Scholar
    • 37. F. A. E. Pirani , On the physical significance of the Riemann tensor, Gen. Relativ. Gravit. 41 (2009) 1215–1232, republication of original article [36] as “Oldie”. Web of ScienceGoogle Scholar
    • 38. C. Møller, On the definition of the center of gravity of an arbitrary closed system in the theory of relativity, https://www.stp.dias.ie/Communications/DIAS-STP-Communications-005-Moller.pdf Commun. Dublin Inst. Adv. Stud. series A 5 (1949) 1–42. Google Scholar
    • 39. E. P. Wigner , On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939) 149–204. Google Scholar
    • 40. H. Bacry , Space-time and degrees of freedom of the elementary particle, Commun. Math. Phys. 5 (1967) 97–105. Google Scholar
    • 41. J. H. Conway et al., ATLAS of Finite Groups (Clarendon Press, Oxford, 1985). Google Scholar
    • 42. H. Bacry and J.-M. Lévy-Leblond , Possible kinematics, J. Math. Phys. 9 (1968) 97–105. Web of ScienceGoogle Scholar
    • 43. T. F. Jordan , Simple derivation of the Newton–Wigner position operator, J. Math. Phys. 21 (1980) 2028–2032. Web of ScienceGoogle Scholar
    • 44. J. Steinhoff, S. Hergt and G. Schäfer , Next-to-leading order gravitational spin(1)-spin(2) dynamics in hamiltonian form, Phys. Rev. D 77 (2008) 081501(R). Web of ScienceGoogle Scholar
    • 45. J. Steinhoff, G. Schäfer and S. Hergt , ADM canonical formalism for gravitating spinning objects, Phys. Rev. D 77 (2008) 104018. Web of ScienceGoogle Scholar
    • 46. J. Steinhoff, S. Hergt and G. Schäfer , Spin-squared hamiltonian of next-to-leading order gravitational interaction, Phys. Rev. D 78 (2008) 101503(R). Web of ScienceGoogle Scholar
    • 47. M. Levi, S. Mougiakakos and M. Vieira, Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order, (2019) arXiv:1912.06276 [hep-th]. Google Scholar
    • 48. A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff and J. Vines, Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios, (2020), arXiv:2003.11391 [gr-qc]. Google Scholar