World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

String inspired cosmological models through Lagrangian invariance

    https://doi.org/10.1142/S0219887820500851Cited by:0 (Source: Crossref)

    We study a string inspired cosmological with variable potential through the Lagrangian invariance method in order to determine the form of the potential. We have studied four cases by combining the different fields, that is, the dilaton ϕ, the potential V(ϕ), the H-field and the matter field (a perfect fluid). In all the studied cases, we found that the potential can only take two possible forms: V=V0 and V=V0emϕ, where V0 and m are numerical constants. We conclude that when we take into account the Kalb–Ramond field, i.e. the H-field, then it is only possible to get a constant potential, V=V0. Nevertheless, if this field is not considered, then we get two possible solutions for the potential: V=V0 and V=V0emϕ. In all the cases, if the potential is constant, V=V0, then we get a de Sitter like solution for the scale factor of the metric, a(t), which verifies the T-duality property, while if the potential varies, then we get a power-law solution for the scale factor, a=ta1,a1.

    AMSC: 83E05, 83F05

    References

    • 1. M. Gasperini , Elements of String Cosmology (Cambridge University Press, 2007). CrossrefGoogle Scholar
    • 2. J. E. Lidsey, D. Wands and E. J. Copeland , Superstring cosmology, Phys. Rep. 337 (2000) 343. Crossref, ISIGoogle Scholar
    • 3. E. J. Copeland, A. Lahiri and D. Wands , String cosmology with a time-dependent antisymmetric tensor potential, Phys. Rev. D 50 (1994) 4868. Crossref, ISIGoogle Scholar
    • 4. G. Veneziano , Scale factor duality for classical and quantum strings, Phys. Lett. B 265 (1991) 287. Crossref, ISIGoogle Scholar
    • 5. G. F. R. Ellis, D. C. Roberts, D. Solomons and P. K. S. Dunsby , A solution to the graceful exit problem in pre-big bang cosmology, Phys. Rev. D 62 (2000) 084004. Crossref, ISIGoogle Scholar
    • 6. M. Gasparini , Elementary introduction to pre-big bang cosmology and to the relic graviton background, Gravitational Waves, eds. by I. CiufoliniV. GoriniU. MoschellaP. Fre’ (IOP Publishing, Bristol, 2001), pp. 280–337, arXiv: hep-th/9707067. CrossrefGoogle Scholar
    • 7. R. de Ritis, G. Marmo, G. Platania, C. Rubano, P. Scudellaro and C. Stornaiolo , New approach to find exact solutions for cosmological models with a scalar field, Phys. Rev. D 42 (1990) 1091. Crossref, ISIGoogle Scholar
    • 8. S. Capozziello, M. De Laurentis and S. D. Odintsov , Hamiltonian dynamics and Noether symmetries in extended gravity cosmology, Eur. Phys. J. C 72 (2012) 2068. Crossref, ISIGoogle Scholar
    • 9. S. Capozziello and M. De Laurentis , Noether symmetries in extended gravity quantum cosmology, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1460004. Link, ISIGoogle Scholar
    • 10. K. F. Dialektopoulos and S. Capozziello , Noether symmetries as a geometric criterion to select theories of gravity, Int. J. Geom. Meth. Mod. Phys. 15(1) (2018) 1840007. Link, ISIGoogle Scholar
    • 11. S. Capozziello, S. J. Gabriele Gionti and Da. Vernieri , String duality transformations in f(R) gravity from Noether symmetry approach, J. Cosmol. Astropart. Phys. 1601 (2016) 015. Crossref, ISIGoogle Scholar
    • 12. M. Benetti, S. Capozziello and L. Lobato , Graef, Swampland conjecture in f(R) gravity by the Noether symmetry approach, Phys. Rev. D 100 (2019) 084013. Crossref, ISIGoogle Scholar
    • 13. T. M. Kalotast and B. G. Wybournet , Dynamical Noether symmetries, J. Phys. A: Math. Gen. 15 (1982) 2077–2083. CrossrefGoogle Scholar
    • 14. N. H. Ibragimov , Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, New York, 1999). Google Scholar
    • 15. P. A. Terzis, N. Dimakis and T. Christodoulakis, Noether analysis of scalar-tensor cosmology, Phys. Rev. D 90 (2014) 123543, arXiv:1410.0802 [gr-qc], T. Christodoulakis, N. Dimakis and Petros A. Terzis, Lie-point and variational symmetries in minisuperspace Einstein’s gravity, J. Phys. A: Math. Theor. 47 (2014) 095202, arXiv:1304.4359 [gr-qc]. Google Scholar
    • 16. E. S. Fradkin and A. A. Tseytlin, Quantum string theory effective action, Nucl. Phys. B 261 (1985) 1; C. G. Callan, E. J. Martinec, M. J. Perry and D. Friedan, Strings in background fields, Nucl. Phys. B 262 (1985) 593. Google Scholar
    • 17. M. B. Green, J. H. Schwarz and E. Witten , Superstring Theory, Vol. I,II (Cambridge University, 1987). Google Scholar
    • 18. J. Polchinski , String Theory, Vols. I and II, (Cambridge University Press, 1998). Google Scholar
    • 19. C. V. Johnson , D-brane primer, Strings, Branes and Gravity (Boulder, 1999), pp. 129–350. Google Scholar
    • 20. P. Candelas, G. T. Horowitz, A. Strominger and E. Witten , Vacuum configurations for superstrings, Nucl. Phys. 258 (1985) 46. Crossref, ISIGoogle Scholar
    • 21. E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151; New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79. Google Scholar
    • 22. E. J. Copeland, A. R. Liddle and D. Wands , Exponential potentials and cosmological scaling solutions, Phys. Rev. D 57 (1998) 4686. Crossref, ISIGoogle Scholar
    • 23. J. D. Barrow and K. E. Kunze , String cosmology, Chaos Solitons Fractals 10 (1999) 257. Crossref, ISIGoogle Scholar
    • 24. P. G. O. Freund and M. A. Rubin , Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233. Crossref, ISIGoogle Scholar
    • 25. I. C. Rosas-Lopez and Y. Kitazawa , Antisymmetric field in string gas cosmology, Phys. Rev. D 82 (2010) 126005. Crossref, ISIGoogle Scholar
    • 26. A. A. Tseytlin , Cosmological solutions with dilaton and maximally symmetric space in string theory, Int. J. Mod. Phys. D 1 (1992) 223. LinkGoogle Scholar
    • 27. D. S. Goldwirth and M. J. Perry , String-dominated cosmology, Phys. Rev. D 49 (1994) 5019. Crossref, ISIGoogle Scholar
    • 28. J. A. Belinchón . String-Inspired gravity through symmetries, Universe 2 (2016) 3. Crossref, ISIGoogle Scholar
    • 29. J. A. Belinchón and R. Uribe , A comparative study of some cosmological models with time varying G and Λ: A symmetry approach., Canadian J. Phys. 97(10) (2019) 1083–1095. Crossref, ISIGoogle Scholar
    • 30. J. A. Belinchón , Self-similar scalar cosmologies, Gravit. Cosmol. 19(4) (2013) 246–256. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!