World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Non-barotropic magnetohydrodynamics as a five function field theory

    We show that ideal non-barotropic magnetohydrodynamics (MHD) of a certain topology is mathematically equivalent to a five function field theory with an induced geometrical structure.

    AMSC: 49Q20, 49S05
    PACS: 52.30.Cv, 02.30.Xx

    References

    • 1. V. A. Vladimirov and H. K. Moffatt, J. Fluid Mech. 283 (1995) 125–139. Crossref, ISIGoogle Scholar
    • 2. A. Yahalom and D. Lynden-Bell, J. Fluid Mech. 607 (2008) 235–265. Crossref, ISIGoogle Scholar
    • 3. A. Yahalom, Europhys. Lett. 89 (2010) 34005. CrossrefGoogle Scholar
    • 4. A. Yahalom, Phys. Lett. A 377(31–33) (2013) 1898–1904. Crossref, ISIGoogle Scholar
    • 5. J. D. Bekenstein and A. Oron, Phys. Rev. E 62(4) (2000) 5594–5602. Crossref, ISIGoogle Scholar
    • 6. A. V. Kats, JETP Lett. 77 (2003) 657. Crossref, ISIGoogle Scholar
    • 7. P. J. Morrison, Poisson brackets for fluids and plasmas, AIP Conf. Proc. Vol. 88, Table 2, pp. 13–46; July 1982, doi: http://dx.doi.org/10.1063/1.33633. Google Scholar
    • 8. A. Yahalom, Simplified variational principles for non-barotropic magnetohydrodynamics, J. Plasma Phys. 82 (2016) doi: 10.1017/S0022377816000222. Crossref, ISIGoogle Scholar
    • 9. P. A. Sturrock, Plasma Physics (Cambridge University Press, Cambridge, 1994). CrossrefGoogle Scholar
    • 10. A. Yahalom, G. A. Pinhasi and M. Kopylenko, in Proc. AIAA Conf., Reno, USA, 2005. Google Scholar
    • 11. A. Mignone, P. Rossi, G. Bodo, A. Ferrari and S. Massaglia, Mon. Not. R. Astron. Soc. 402(1) (2010) 7–12. Crossref, ISIGoogle Scholar
    • 12. I. V. Igumenshchev, R. Narayan and M. A. Abramowicz, Astrophys. J. 592(2) (2003) 1042. Crossref, ISIGoogle Scholar
    • 13. J. Hoyos, A. Reisenegger and J. A. Valdivia, in VI Reunion Anual Sociedad Chilena de Astronomia (SOCHIAS), Vol. 1 (2007), p. 20. Google Scholar
    • 14. V. A. Vladimirov, H. K. Moffatt and K. I. Ilin, J. Fluid Mech. 329 (1996) 187; J. Plasma Phys. 57 (1997) 89; J. Fluid Mech. 390 (1999) 127. Google Scholar
    • 15. I. B. Bernstein, E. A. Frieman, M. D. Kruskal and R. M. Kulsrud, Proc. R. Soc. Lond. A, Math. Phys. Sci. 244(1236) (1958) 17–40. Crossref, ISIGoogle Scholar
    • 16. J. A. Almaguer, E. Hameiri, J. Herrera and D. D. Holm, Phys. Fluids 31 (1988) 1930. Crossref, ISIGoogle Scholar
    • 17. J. Katz, S. Inagaki and A. Yahalom, Publ. Astron. Soc. Jpn. 45 (1993) 421–430. ISIGoogle Scholar
    • 18. A. Yahalom, J. Katz and K. Inagaki, Mon. Not. R. Astron. Soc. 268 (1994) 506–516. Crossref, ISIGoogle Scholar
    • 19. A. Yahalom, Mon. Not. R. Astron. Soc. 418 (2011) 401–426. Crossref, ISIGoogle Scholar
    • 20. A. Yahalom, US patent 6,516,292 (2003). Google Scholar
    • 21. A. Yahalom and G. A. Pinhasi, in Proc. AIAA Conf., Reno, USA, 2003. Google Scholar
    • 22. D. Ophir, A. Yahalom, G. A. Pinhasi and M. Kopylenko, in Proc. ICE — Engineering and Computational Mechanics, Volume 165, Issue 1, pp. 3–14, ISSN: 1755-0777, E-ISSN: 1755-0785. Google Scholar
    • 23. A. Yahalom, Procedia IUTAM 7 (2013) 223–232. CrossrefGoogle Scholar
    • 24. A. YahalomV. Dobrev (eds.), Lie Theory and Its Applications in Physics, in IX International Workshop, Springer Proceedings in Mathematics & Statistics, Vol. 36 (Springer, Japan, 2013), pp. 461–468. CrossrefGoogle Scholar
    • 25. J. Katz and D. Lynden-Bell, Geophys. Astrophys. Fluid Dyn. 33 (1985) 1–33. Crossref, ISIGoogle Scholar
    • 26. A. Yahalom, J. Math. Phys. 36 (1995) 1324–1327. Crossref, ISIGoogle Scholar
    • 27. A. Yahalom, A Conserved Cross Helicity for Non-Barotropic MHD, arXiv:1605.02537. Google Scholar
    • 28. A. Yahalom, Variational principles for non-barotropic magnetohydrodynamics a tool for evaluation of plasma processes, Proceedings of the XV Israeli-Russian Bi-National Workshop, The optimization of composition, structure and properties of metals, oxides, composites, nano- and amorphous materials, Yekaterinburg, Russian Federation (26–30 September 2016). Google Scholar
    Published: 2 September 2016
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!