World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Special Issue: Variational Principles and Conservation Laws in General RelativityNo Access

The metrizability problem for Lorentz-invariant affine connections

    https://doi.org/10.1142/S0219887816501103Cited by:0 (Source: Crossref)

    The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold ×(3\{(0,0,0)}) of the Euclidean space 4 coincides with the Levi-Civita connection of some SO(3,1), respectively (4×sSO(3,1))-invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.

    AMSC: 53B05, 53A55, 58D19, 22E43

    References

    • 1. M. Anastasiei, Metrizable linear connections in vector bundles, Publ. Math. Debrecen 63 (2003) 277–288. CrossrefGoogle Scholar
    • 2. I. Bucataru, T. Milkovszki and Z. Muzsnay, Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces, preprint (2015), arXiv: 1509.04414v2 [math.DG]. Google Scholar
    • 3. M. Crampin, On the differential geometry of the Euler–Lagrange equations, and the inverse problem of Lagrangian dynamics, J. Phys. A. 14 (1981) 2567–2575. CrossrefGoogle Scholar
    • 4. M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics, J. Phys. A. 17 (1984) 1437–1447. CrossrefGoogle Scholar
    • 5. L. P. Eisenhart and O. Veblen, The Riemannian geometry and its generalization, Proc. Natl. Acad. Sci. USA 8 (1922) 19–23. CrossrefGoogle Scholar
    • 6. L. Fatibene and M. Francaviglia, General theory of Lie derivatives for Lorentz tensors, Commun. Math. 19 (2011) 11–25. Google Scholar
    • 7. I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice-Hall, New Jersey, 1963). Google Scholar
    • 8. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34 (American Mathematical Society, Providence, RI, 2001). CrossrefGoogle Scholar
    • 9. T. W. B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2(2) (1961) 212–221. Crossref, Web of ScienceGoogle Scholar
    • 10. O. Kowalski, On regular curvature structures, Math. Z. 125 (1972) 129–138. Crossref, Web of ScienceGoogle Scholar
    • 11. O. Kowalski, Metrizability of affine connections on analytic manifolds, Note Mat. 8 (1998) 1–11. Google Scholar
    • 12. M. Kriele, Spacetime: Foundations of General Relativity and Differential Geometry (Springer-Verlag, Berlin, 1999). Google Scholar
    • 13. D. Krupka and A. Sattarov, The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca 35 (1985) 217–222. Google Scholar
    • 14. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Vol. 2, 3rd edn. (Pergamon Press, Oxford, 1971). Google Scholar
    • 15. L. Mangiarotti and G. Sardanashvily, Connections in Classical and Quantum Field Theory (World Scientific, Singapore, 2000). LinkGoogle Scholar
    • 16. W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics, J. Phys. A. 15 (1982) 1437–1447. CrossrefGoogle Scholar
    • 17. B. G. Schmidt, Conditions on a connection to be a metric connection, Commun. Math. Phys. 29 (1973) 55–59. Crossref, Web of ScienceGoogle Scholar
    • 18. L. Tamassy, Metrizability of affine connections, Balkan J. Geom. Appl. 2 (1997) 131–138. Google Scholar
    • 19. E. Tanaka and D. Krupka, On metrizability of invariant affine connections, Int. J. Geom. Meth. Mod. Phys. 9(1) (2012), Article ID: 1250014, 15pp. Link, Web of ScienceGoogle Scholar
    • 20. Z. Vilimová, Metrizability problem of a linear connection, Thesis, Silesian University, Opava (2004) (in Czech). Google Scholar
    • 21. E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. of Math. 40(1) (1939) 149–204. CrossrefGoogle Scholar