World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special issue on XXIV International Fall Workshop on Geometry and Physics (IFWGP)No Access

Mathematical foundations of quantum mechanics: An advanced short course

    https://doi.org/10.1142/S0219887816300117Cited by:2 (Source: Crossref)

    This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C-) algebraic formulation of quantum theories.

    AMSC: 81P05, 81P10, 81Q10, 81R15

    References

    • 1. E. Ercolessi, A short course on quantum mechanics and methods of quantization, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1560008, 58 pp. Link, Web of ScienceGoogle Scholar
    • 2. G. Ghirardi, Sneaking a Look at God’s Cards: Unraveling the Mysteries of Quantum Mechanics, rev. edn. (Princeton University Press, 2007). Google Scholar
    • 3. E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/. Google Scholar
    • 4. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1930) Google Scholar
    • 5. I. M. Gelfand and N. J. Vilenkin, Generalized Functions, Some Applications of Harmonic Analysis. Rigged Hilbert Spaces, Vol. 4 (Academic Press, New York, 1964). Google Scholar
    • 6. V. Moretti, Spectral Theory and Quantum Mechanics (Springer, 2013). CrossrefGoogle Scholar
    • 7. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932). Google Scholar
    • 8. W. Rudin, Functional Analysis, 2nd edn. (McGraw-Hill, 1991). Google Scholar
    • 9. K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space (Springer, 2012). CrossrefGoogle Scholar
    • 10. G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, Vol. 118 (Springer, New York, 1989). CrossrefGoogle Scholar
    • 11. V. S. Varadarajan, Geometry of Quantum Theory, 2nd edn. (Springer, Berlin, 2007). Google Scholar
    • 12. Ph. Blanchardet al., (eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems, Lecture Notes in Physics (Springer, Berlin, 2000). CrossrefGoogle Scholar
    • 13. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, 2nd edn., Vols. I and II (Springer, Berlin, 2002). Google Scholar
    • 14. G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. (2) 37(4) (1936) 823–843. CrossrefGoogle Scholar
    • 15. E. G. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Mathematics and Its Applications, Vol. 15 (Addison-Wesley, Reading, MA, 1981). Google Scholar
    • 16. K. Engesseret al., (eds.), Handbook of Quantum Logic and Quantum Structures (Elsevier, Amsterdam, 2009). CrossrefGoogle Scholar
    • 17. G. Mackey, The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963). Google Scholar
    • 18. C. Piron, Axiomatique quantique, Helv. Phys. Acta 37 (1964) 439–468. Google Scholar
    • 19. J. M. Jauch and C. Piron, On the structure of quantal proposition system, Helv. Phys. Acta 42 (1969) 842. Google Scholar
    • 20. J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1978). Google Scholar
    • 21. A. Dvurecenskij, Gleasons Theorem and Its Applications (Kluwer Academic Publishers, Dordrecht, 1992). Google Scholar
    • 22. M. P. Solèr, Characterization of Hilbert spaces by orthomodular spaces, Commun. Algebra 23 (1995) 219–243. Crossref, Web of ScienceGoogle Scholar
    • 23. S. S. Holland, Orthomodularity in infinite dimensions: A theorem of M. Solèr, Bull. Amer. Math. Soc. 32 (1995) 205–234. Crossref, Web of ScienceGoogle Scholar
    • 24. D. Aerts and B. van Steirteghem, Quantum axiomatics and a theorem of M. P. Solér, Int. J. Theor. Phys. 39 (2000) 497–502. Crossref, Web of ScienceGoogle Scholar
    • 25. H. Casini, The logic of causally closed spacetime subsets, Class. Quantum Grav. 19 (2002) 6389–6404. Crossref, Web of ScienceGoogle Scholar
    • 26. A. S. Wightman, Superselection rules: Old and new, Nuovo Cimento B 110 (1995) 751–769. Crossref, Web of ScienceGoogle Scholar
    • 27. B. Simon, Quantum dynamics: From automorphism to Hamiltonian, in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, eds. E. H. LiebB. SimonA. S. Wightman (Princeton University Press, Princeton, 1976), pp. 327–349. Google Scholar
    • 28. A. O. Barut and R. Raczka, Theory of Group Representations and Applications (World Scientific, 1984). Google Scholar
    • 29. F. Strocchi, An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians (World Scientific, Singapore, 2005). LinkGoogle Scholar
    • 30. R. Haag, Local Quantum Physics, 2nd rev. and enlarged edn. (Springer, Berlin, 1996). CrossrefGoogle Scholar
    • 31. H. Araki, Mathematical Theory of Quantum Fields (Oxford University Press, Oxford, 2009). Google Scholar
    • 32. I. Khavkine and V. Moretti, Algebraic QFT in curved spacetime and quasifree Hadamard states: An introduction, in Advances in Algebraic Quantum Field Theory, eds. R. BrunettiC. DappiaggiK. FredenhagenJ. Yngvason (Springer, 2015). CrossrefGoogle Scholar
    • 33. F. Strocchi, The physical principles of quantum mechanics: A critical review, European Phys. J. Plus 127 (2012) 12. Crossref, Web of ScienceGoogle Scholar
    • 34. P. Busch, Quantum states and generalized observables: A simple proof of Gleason’s theorem, Phys. Rev. Lett. 91 (2003) 120403. Crossref, Web of ScienceGoogle Scholar
    • 35. P. Busch, M. Grabowski and P. J. Lahti, Operational Quantum Physics (Springer, Berlin, 1995). CrossrefGoogle Scholar
    • 36. G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley-Interscience, New York, 1972). Google Scholar
    • 37. I. Segal, Postulates for general quantum mechanics, Ann. of Math. (2) 48 (1947) 930–948. Crossref, Web of ScienceGoogle Scholar
    • 38. R. F. Streater, Lost Causes in and Beyond Physics (Springer, Berlin, 2007). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!