World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Cauchy problem in hybrid metric-Palatini f(X)-gravity

    https://doi.org/10.1142/S021988781450042XCited by:20 (Source: Crossref)

    The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein–Hilbert Lagrangian an f(R)-term constructed à la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.

    AMSC: 04.50.Kd, 04.20.Ex, 04.20.Cv

    References

    • S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565; A. G. Riess et al. [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009; A. G. Riess et al. [Supernova Search Team Collaboration], Astrophys. J. 607 (2004) 665 . Google Scholar
    • E. J.   Copeland , M.   Sami and S.   Tsujikawa , Int. J. Mod. Phys. D   15 , 1753 ( 2006 ) . Link, Web of ScienceGoogle Scholar
    • S.   Capozziello , Int. J. Mod. Phys. D   11 , 483 ( 2002 ) . Link, Web of ScienceGoogle Scholar
    • S. M.   Carroll et al. , Phys. Rev. D   70 , 043528 ( 2004 ) . Crossref, Web of ScienceGoogle Scholar
    • S. Capozziello, V. F. Cardone and A. Troisi, J. Cosmol. Astropart. Phys. 0608 (2006) 001; S. Capozziello, V. F. Cardone and A. Troisi, Mon. Not. Roy. Astron. Soc. 375 (2007) 1423; A. Borowiec, W. Godlowski and M. Szydlowski, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 183; C. F. Martins and P. Salucci, Mon. Not. Roy. Astron. Soc. 381 (2007) 1103; C. G. Boehmer, T. Harko and F. S. N. Lobo, Astropart. Phys. 29 (2008) 386; C. G. Boehmer, T. Harko and F. S. N. Lobo, J. Cosmol. Astropart. Phys. 0803 (2008) 024 . Google Scholar
    • H. Weyl, Space, Time, Matter, Chap. IV (Dover, New York, 1921); A. Eddington, The Mathematical Theory of Relativity, Chap. IV (Cambridge University Press, London, 1924); K. Lanczos, Ann. Math. 39 (1938) 842; H. A. Buchdahl, Proc. Edinburgh Math. Soc. 8 (1948) 89; A. Pais and G. E. Uhlenbeck, Phys. Rev. 79 (1950) 145; R. Utiyama and B. de Witt, J. Math. Phys. 3 (1962) 608; P. Havas, Gen. Relat. Grav. 8 (1977) 631; K. Stelle, Gen. Relat. Grav. 5 (1978) 353; P. D. Mannheim and D. Kazanas, Astrophys. J. 342 (1989) 635; D. Kazanas and P. D. Mannheim, Astrophys. J. Suppl. Ser. 76 (1991) 421 . Google Scholar
    • H. A. Buchdahl, Mon. Not. Roy. Astron. Soc. 150 (1970) 1; R. Kerner, Gen. Relat. Grav. 14 (1982) 453; J. P. Duruisseau, R. Kerner and P. Eysseric, Gen. Relat. Grav. 15 (1983) 797; J. D. Barrow and A. C. Ottewill, J. Phys. A: Math. Gen. 16 (1983) 2757; A. A. Starobinsky, Phys. Lett. B 91 (1980) 99 . Google Scholar
    • A. De Felice and S. Tsujikawa, Living Rev. Relat. 13 (2010) 3; T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82 (2010) 451; S. Nojiri and S. D. Odintsov, Phys. Rep. 505 (2011) 59; F. S. N. Lobo, Dark energy-current advances and ideas, Research Signpost (2009) 173–204; S. Capozziello and M. De Laurentis, Phys. Rep. 509 (2011) 167 . Google Scholar
    • G. J.   Olmo , Int. J. Mod. Phys. D   20 , 413 ( 2011 ) . Link, Web of ScienceGoogle Scholar
    • J. Khoury and A. Weltman, Phys. Rev. Lett. 93 (2004) 171104; S. Capozziello and S. Tsujikawa, Phys. Rev. D 77 (2008) 107501 . Google Scholar
    • T.   Harko et al. , Phys. Rev. D   85 , 084016 ( 2012 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello et al. , Astropart. Phys.   52 , 65 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello et al. , J. Cosmol. Astropart. Phys.   07 , 024 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello et al. , J. Cosmol. Astropart. Phys.   1304 , 011 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • T. S.   Koivisto and N.   Tamanini , Phys. Rev. D   87 , 104030 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • C. G.   Boehmer , F. S. N.   Lobo and N.   Tamanini , Phys. Rev. D   88 , 104019 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello et al. , Phys. Rev. D   86 , 127504 ( 2012 ) . Crossref, Web of ScienceGoogle Scholar
    • S. Capozziello, L. Fabbri and S. Vignolo, Mod. Phys. Lett. A 28(35), 1350155 (2013). Link, Web of ScienceGoogle Scholar
    • R. M.   Wald , General Relativity ( University of Chicago Press , Chicago , 1984 ) . CrossrefGoogle Scholar
    • S.   Capozziello and S.   Vignolo , Int. J. Geom. Meth. Mod. Phys.   6 , 985 ( 2009 ) . Link, Web of ScienceGoogle Scholar
    • S.   Capozziello and S.   Vignolo , Class. Quantum Grav.   26 , 175013 ( 2009 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello and S.   Vignolo , Int. J. Geom. Meth. Mod. Phys.   8 , 167 ( 2011 ) . Link, Web of ScienceGoogle Scholar
    • G. J.   Olmo and H.   Sanchis-Alepuz , Phys. Rev. D   83 , 104036 ( 2011 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Capozziello and S.   Vignolo , Int. J. Geom. Meth. Mod. Phys.   9 , 1250006 ( 2012 ) ,   arXiv: 1103.2302 . Link, Web of ScienceGoogle Scholar
    • Y.   Choquet-Bruhat , General Relativity and the Einstein Equations ( Oxford University Press , New York , 2009 ) . Google Scholar
    • M.   Salgado , Class. Quantum Grav.   23 , 4719 ( 2006 ) . Crossref, Web of ScienceGoogle Scholar
    • J.   Leray , Hyperbolic Differential Equations ( Institute for Advanced Study , Princeton , 1953 ) . Google Scholar
    • Y.   Choquet-Bruhat , Gravitation: An Introduction to Current Research , ed. L.   Witten ( Wiley , New York , 1962 ) . Google Scholar
    • Y.   Fourés-Bruhat , Bull. Soc. Math. France   86 , 155 ( 1958 ) . CrossrefGoogle Scholar
    • Y.   Choquet-Bruhat , J.   Isenberg and D.   Pollack , J. Fixed Point Theory Appl.   1 , 31 ( 2007 ) . Crossref, Web of ScienceGoogle Scholar
    • T. S.   Koivisto , Class. Quantum Grav.   23 , 4289 ( 2006 ) . Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!