DIRAC OPERATORS ON NONCOMMUTATIVE PRINCIPAL CIRCLE BUNDLES
Abstract
We study spectral triples over noncommutative principal U(1)-bundles of arbitrary dimension and a compatibility condition between the connection and the Dirac operator on the total space and on the base space of the bundle. Examples of low-dimensional noncommutative tori are analyzed in more detail and all connections found that are compatible with an admissible Dirac operator. Conversely, a family of new Dirac operators on the noncommutative tori, which arise from the base-space Dirac operator and a suitable connection is exhibited. These examples are extended to the theta-deformed principal U(1)-bundle .
References
- Sém. Th. Spec. Géom Inst. Fourier Grenoble 16, 33 (1998). Google Scholar
- Ann. Global Anal. Geom. 16, 221 (1998). Web of Science, Google Scholar
- Axioms 1(2), 201 (2012). Google Scholar
- T. Brzezinski and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591; Erratum: 167 (1995) 235 . Google Scholar
- Group 24. Physical and Mathematical Aspects of Symmetries, eds.
J.-P. Gazeau (IOP, 2003) pp. 791–794. Google Scholar , - J. Geom. Phys. 62, 1097 (2012). Web of Science, Google Scholar
-
A. Connes , Noncommutative Geometry ( Academic Press , San Diego , 1994 ) . Google Scholar - Lett. Math. Phys. 34, 203 (1995). Web of Science, Google Scholar
- Commun. Math. Phys. 182, 155 (1996). Web of Science, Google Scholar
- Commun. Math. Phys. 230, 539 (2002). Web of Science, Google Scholar
- Commun. Math. Phys. 221, 141 (2001). Web of Science, Google Scholar
- Int. J. Geom. Meth. Mod. Phys. 8, 1833 (2011). Link, Web of Science, Google Scholar
- Commun. Math. Phys. 220, 301 (2001). Web of Science, Google Scholar
- Commun. Math. Phys. 318, 111 (2013). Web of Science, Google Scholar
- J. Math. Phys. 54, 013518 (2013). Web of Science, Google Scholar
-
J. M. Gracia-Bondia , J. C. Várilly and H. Figueroa , Elements of Noncommutative Geometry ( Birkhäuser , Boston , 2001 ) . Google Scholar - Commun. Math. Phys. 182, 579 (1996). Web of Science, Google Scholar
- Commun. Math. Phys. 206, 247 (1999). Web of Science, Google Scholar
- Mem. Amer. Math. Soc. 106, 506 (1993). Google Scholar
- Noncommutative Geometry and Quantum Groups 61, eds.
P. M. Hajac and W. Pusz (Banach Center Publications, Warszawa, 2003) pp. 231–263. Google Scholar ,
Remember to check out the Most Cited Articles! |
---|
Check out new Mathematical Physics books in our Mathematics 2021 catalogue |