World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.


    We present here a range of considerations relating to the problem of Dirac for a quantifiable manifold (M, ω) to the dual a Lie algebra with a Poisson structure that is a Lie–Poisson structure minus.


    • R.   Abraham and J.   Marsden , Foundations of Mechanics , 2nd edn. ( Addison-Wesley , 1985 ) . Google Scholar
    • P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, 1976). Google Scholar
    • J. Geraci, An introduction to geometric prequantization, preprint (2009) , arXiv: 0911.0964v1 . Google Scholar
    • C. Hedrea, R. Negrea and I. Zaharie, Int. J. Geom. Meth. Mod. Phys. 9(7), 7 (2012), DOI: 10.1142/S0219887812200113. Google Scholar
    • C. Hedreaet al., Int. J. Geom. Meth. Mod. Phys. 8(6), 1259 (2011), DOI: 10.1142/S0219887811005683. Link, ISIGoogle Scholar
    • B. Kostant, Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics 170 (Springer, 1970) pp. 87–208. CrossrefGoogle Scholar
    • K. S.   Lam , Non-Relativistic Quantum Theory — Dynamics, Symmetry and Geometry ( World Scientific , 2009 ) . LinkGoogle Scholar
    • M.   Puta , Hamiltonian Mechanical Systems and Geometric Quantization , Mathematics and Its Applications   260 ( Springer , Berlin , 1993 ) . CrossrefGoogle Scholar
    • M. Puta and C. Hedrea, Some remarks on geometric quantization, Proc. 9th National Conf. Romanian Mathematical Society, ed. M. Megan (West University Press, Timişoara, 2005) pp. 348–353. Google Scholar
    • M. Puta and F. Iacob, Geometric prequantization of the symmetric rigid body, The Fifth Int. Workshop on Differential Geometry and Its ApplicationsXXXIX (Analele Universităţii Timişoara, 2001) pp. 385–390. Google Scholar
    • M. Puta and Gh. Ivan, Groupoids, Lie–Poisson structures and quantization, Proc. Int. Conf. Group Theory39, eds. M. Deaoonescu, Gh. Ivan and Gh. Silberberg (West University Press, Timişoara, 1992) pp. 117–123. Google Scholar
    • W. G. Ritter, Geometric quantization, preprint, Jefferson Physical Laboratory, Harvard University Cambridge, MA (2008), pp. 1–10 . Google Scholar
    • I. Segal, J. Math. Phys. 1, 468 (1960), DOI: 10.1063/1.1703683. Crossref, ISIGoogle Scholar
    • L. Van Hove, Acad. Roy. Belgian Cl. Sci. Mém. Collect. 26, 102 (1951). Google Scholar
    • N. M. J.   Woodhouse , Geometric Quantization ( Oxford University Press , 1992 ) . Google Scholar
    • A. Weinstein and M. Zambon, Travaux Math. 16, 187 (2005). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!