AN ALGORITHM FOR MESH REFINEMENT AND UN-REFINEMENT IN FAST TRANSIENT DYNAMICS
Abstract
A procedure to locally refine and un-refine an unstructured computational grid of four-node quadrilaterals (in 2D) or of eight-node hexahedra (in 3D) is presented. The chosen refinement strategy generates only elements of the same type as their parents, but also produces so-called hanging nodes along nonconforming element-to-element interfaces. Continuity of the solution across such interfaces is enforced strongly by Lagrange multipliers. The element split and un-split algorithm is entirely integer-based. It relies only upon element connectivity and makes no use of nodal coordinates or other real-number quantities. The chosen data structure and the continuous tracking of the nature of each node facilitate the treatment of natural and essential boundary conditions in adaptivity. A generalization of the concept of neighbor elements allows transport calculations in adaptive fluid calculations. The proposed procedure is tested in structure and fluid wave propagation problems in explicit transient dynamics.
References
- J. Phys.: Conference Series 180, (2009), DOI: 10.1088/1742-6596/180/1/012009. Google Scholar
- Comput. Meth. Appl. Mech. Eng. 128(4), 231 (1995), DOI: 10.1016/0045-7825(95)00843-8. Crossref, Web of Science, Google Scholar
- Int. J. Numer. Meth. Eng. 78, 1436 (2009), DOI: 10.1002/nme.2533. Crossref, Web of Science, Google Scholar
-
F. Casadei , M. Larcher and N. Leconte , Strong and weak forms of fully nonconforming FSI algorithm in fast transient dynamics for blast loading of structures , Proc. COMPDYN 2011 Conference , eds.M. Papadrakakis , M. Fragiadakis and V. Plevris ( 2011 ) . Google Scholar - Casadei, F. et al. [2012] EUROPLEXUS User's Manual: see http://europlexus.jrc.ec. europa.eu/ . Google Scholar
- Comput. Meth. Appl. Mech. Eng. 53, 67 (1985), DOI: 10.1016/0045-7825(85)90076-3. Crossref, Web of Science, Google Scholar
- Comput. Meth. Appl. Mech. Eng. 77, 79 (1989), DOI: 10.1016/0045-7825(89)90129-1. Crossref, Web of Science, Google Scholar
- Int. J. Numer. Meth. Eng. 65, 2139 (2006), DOI: 10.1002/nme.1531. Crossref, Web of Science, Google Scholar
- Comput. Meth. Appl. Mech. Eng. 194, 5068 (2005), DOI: 10.1016/j.cma.2004.11.025. Crossref, Web of Science, Google Scholar
- Eng. Anal. Bound. Elem. 32, 440 (2008), DOI: 10.1016/j.enganabound.2007.11.011. Crossref, Web of Science, Google Scholar
- Finite Elem. Anal. Design 47, 256 (2011), DOI: 10.1016/j.finel.2010.10.007. Crossref, Web of Science, Google Scholar
- Comput. Meth. Appl. Mech. Eng. 191, 1923 (2002), DOI: 10.1016/S0045-7825(01)00360-7. Crossref, Web of Science, Google Scholar
- Comput. Meth. Appl. Mech. Eng. 195, 4843 (2006), DOI: 10.1016/j.cma.2005.11.015. Crossref, Web of Science, Google Scholar
- Math. Meth. Appl. Sci. 32, 2148 (2009), DOI: 10.1002/mma.1130. Crossref, Web of Science, Google Scholar
- Commun. Numer. Meth. Eng. (2009), DOI: 10.1002/cnm.1291. Google Scholar
- Int. J. Numer. Meth. Eng. 47, 629 (2000). Crossref, Web of Science, Google Scholar
- J. Comput. Phys. 72, 449 (1987), DOI: 10.1016/0021-9991(87)90093-3. Crossref, Web of Science, Google Scholar
- Eng. Anal. Bound. Elem. 35, 1123 (2011), DOI: 10.1016/j.enganabound.2010.05.019. Crossref, Web of Science, Google Scholar
- Int. J. Numer. Meth. Fluids 62, 499 (2010). Crossref, Web of Science, Google Scholar
- IEEE Comput. Graphics Appl. 3(1), 34 (1983), DOI: 10.1109/MCG.1983.262997. Google Scholar
- Finite Elem. Anal. Design 44, 831 (2008), DOI: 10.1016/j.finel.2008.06.010. Crossref, Web of Science, Google Scholar
- Finite Elem. Anal. Design 44, 889 (2008), DOI: 10.1016/j.finel.2008.06.006. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out these titles in finite element methods! |