World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Incremental Learning of an Open-Ended Collaborative Skill Library

    https://doi.org/10.1142/S0219843620500012Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Intelligent assistive robots can potentially contribute to maintaining an elderly person’s independence by supporting everyday life activities. However, the number of different and personalized activities to be supported renders pre-programming of all respective robot behaviors prohibitively difficult. Instead, to cope with a continuous and potentially open-ended stream of cooperative tasks, new collaborative robot behaviors need to be continuously learned and updated from demonstrations. To this end, we introduce an online learning method to incrementally build a cooperative skill library of probabilistic interaction primitives. The resulting model chooses a corresponding robot response to a human movement where the human intention is extracted from previously demonstrated movements. While existing batch learning methods for movement primitives usually learn such skill libraries only once for a pre-defined number of different skills, our approach enables extending the skill library in an open-ended and online fashion from new incoming demonstrations. The proposed approach is evaluated on a low-dimensional benchmark task and in a collaborative scenario with a 7DoF robot, where we also investigate the generalization of learned skills between different subjects.

    References

    • 1. K. Linz and S. Stula, Demographic change in Europe-an overview, Observatory for Sociopolitical Developements in Europe 4(1) (2010) 2–10. Google Scholar
    • 2. S. Schaal, Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 3(6) (1999) 233–242. Crossref, Web of ScienceGoogle Scholar
    • 3. D. A. Rosenbaum, Human Motor Control (Academic press, 2009). Google Scholar
    • 4. G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters and G. Neumann, Learning interaction for collaborative tasks with probabilistic movement primitives, in 2014 14th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids) (IEEE, 2014), pp. 527–534. CrossrefGoogle Scholar
    • 5. M. Ewerton, G. Neumann, R. Lioutikov, H. B. Amor, J. Peters and G. Maeda, Learning multiple collaborative tasks with a mixture of interaction primitives, in 2015 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2015), pp. 1535–1542. CrossrefGoogle Scholar
    • 6. D. Koert, S. Trick, M. Ewerton, M. Lutter and J. Peters, Online learning of an open-ended skill library for collaborative tasks, in 2018 IEEE-RAS 18th Int. Conf. Humanoid Robots (Humanoids) (IEEE, 2018), pp. 1–9. CrossrefGoogle Scholar
    • 7. B. D. Argall, S. Chernova, M. Veloso and B. Browning, A survey of robot learning from demonstration, Robot. Auton. Syst. 57(5) (2009) 469–483. Crossref, Web of ScienceGoogle Scholar
    • 8. A. Billard, S. Calinon, R. Dillmann and S. Schaal, Robot programming by demonstration, in Springer Handbook of Robotics (Springer, 2008), pp. 1371–1394. CrossrefGoogle Scholar
    • 9. P. Pastor, H. Hoffmann, T. Asfour and S. Schaal, Learning and generalization of motor skills by learning from demonstration, in 2009 IEEE Int. Conf. on Robotics and Automation (IEEE, 2009), pp. 763–768. CrossrefGoogle Scholar
    • 10. D. Vogt, S. Stepputtis, S. Grehl, B. Jung and H. B. Amor, A system for learning continuous human-robot interactions from human-human demonstrations, in 2017 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2017), pp. 2882–2889. CrossrefGoogle Scholar
    • 11. G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer and J. Peters, Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks, Auton. Robots 41(3) (2017) 593–612. Crossref, Web of ScienceGoogle Scholar
    • 12. H. B. Amor, D. Vogt, M. Ewerton, E. Berger, B. Jung and J. Peters, Learning responsive robot behavior by imitation, in 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IEEE, 2013), pp. 3257–3264. CrossrefGoogle Scholar
    • 13. D. Vogt, B. Lorenz, S. Grehl and B. Jung, Behavior generation for interactive virtual humans using context-dependent interaction meshes and automated constraint extraction, Comput. Animation Virtual Worlds 26(3–4) (2015) 227–235. Crossref, Web of ScienceGoogle Scholar
    • 14. S. Nikolaidis, R. Ramakrishnan, K. Gu and J. Shah, Efficient model learning from joint-action demonstrations for human-robot collaborative tasks, in Proc. 10th Annual ACM/IEEE International Conf. Human-Robot Interaction (ACM, 2015), pp. 189–196. CrossrefGoogle Scholar
    • 15. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal, Dynamical movement primitives: Learning attractor models for motor behaviors, Neural Comput. 25(2) (2013) 328–373. Crossref, Web of ScienceGoogle Scholar
    • 16. S. Calinon, F. Guenter and A. Billard, On learning, representing, and generalizing a task in a humanoid robot, IEEE Trans. Syst. Man, Cybernet. Part B (Cybernetics) 37(2) (2007) 286–298. CrossrefGoogle Scholar
    • 17. A. Paraschos, C. Daniel, J. Peters and G. Neumann, Using probabilistic movement primitives in robotics, Auton. Robot. 42(3) (2018) 529–551. Crossref, Web of ScienceGoogle Scholar
    • 18. Y. Huang, L. Rozo, J. Silvério and D. G. Caldwell, Kernelized movement primitives, The Int. J. Robot. Res. 38(7) (2019) 833–852. Crossref, Web of ScienceGoogle Scholar
    • 19. H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer and J. Peters, Interaction primitives for human-robot cooperation tasks, in 2014 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2014). CrossrefGoogle Scholar
    • 20. C. Pérez-D’Arpino and J. A. Shah, Fast target prediction of human reaching motion for cooperative human-robot manipulation tasks using time series classification, in 2015 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2015), pp. 6175–6182. CrossrefGoogle Scholar
    • 21. D. Lee, C. Ott and Y. Nakamura, Mimetic communication model with compliant physical contact in human-humanoid interaction, The Int. J. Robot. Res. 29(13) (2010) 1684–1704. Crossref, Web of ScienceGoogle Scholar
    • 22. G. Konidaris, S. Kuindersma, R. Grupen and A. Barto, Robot learning from demonstration by constructing skill trees, The Int. J. Robot. Res. 31(3) (2012) 360–375. Crossref, Web of ScienceGoogle Scholar
    • 23. S. Calinon and A. Billard, Incremental learning of gestures by imitation in a humanoid robot, in Proc. ACM/IEEE Int. Conf. Human-Robot Interaction (ACM, 2007), pp. 255–262. CrossrefGoogle Scholar
    • 24. A. Ahmed and E. Xing, Dynamic non-parametric mixture models and the recurrent chinese restaurant process: With applications to evolutionary clustering, in Proc. 2008 SIAM Int. Conf. Data Mining (SIAM, 2008), pp. 219–230. CrossrefGoogle Scholar
    • 25. O. Arandjelovic and R. Cipolla, Incremental learning of temporally-coherent gaussian mixture models, Society of Manufacturing Engineers (SME) Technical Papers (British Machine Vision Conference, 2005), pp. 1–1. Google Scholar
    • 26. P. M. Engel and M. R. Heinen, Incremental learning of multivariate gaussian mixture models, in Brazilian Symp. Artificial Intelligence (Springer, 2010), pp. 82–91. CrossrefGoogle Scholar
    • 27. R. C. Pinto and P. M. Engel, A fast incremental gaussian mixture model, PloS one 10(10) (2015) e0139931. Web of ScienceGoogle Scholar
    • 28. A. Declercq and J. H. Piater, Online learning of gaussian mixture models-a two-level approach. in VISAPP (1), 2008, pp. 605–611. Google Scholar
    • 29. G. Maeda, M. Ewerton, T. Osa, B. Busch and J. Peters, Active incremental learning of robot movement primitives, in Conf. Robot Learning (CORL), 2017. Google Scholar
    • 30. J. Hoyos, F. Prieto, G. Alenya and C. Torras, Incremental learning of skills in a task-parameterized gaussian mixture model, J. Intell. Robot. Syst. 82(1) (2016) 81–99. Crossref, Web of ScienceGoogle Scholar
    • 31. I. Havoutis, A. K. Tanwani and S. Calinon, Online incremental learning of manipulation tasks for semi-autonomous teleoperation, in IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),Workshop on Closed-loop Grasping and Manipulation (Challenges and Progress, Daejeon, Kora, 2016). Google Scholar
    • 32. D. Kulić, C. Ott, D. Lee, J. Ishikawa and Y. Nakamura, Incremental learning of full body motion primitives and their sequencing through human motion observation, The Int. J. Robot. Res. 31(3) (2012) 330–345. Crossref, Web of ScienceGoogle Scholar
    • 33. A. Lemme, R. F. Reinhart and J. J. Steil, “Self-supervised bootstrapping of a movement primitive library from complex trajectories,” in 2014 14th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids) (IEEE, 2014), pp. 726–732. CrossrefGoogle Scholar
    • 34. K. Muelling, J. Kober and J. Peters, Learning table tennis with a mixture of motor primitives,” in 2010 10th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids) (IEEE, 2010), pp. 411–416. CrossrefGoogle Scholar
    • 35. R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, “Adaptive mixtures of local experts,” Neural comput. 3(1) (1991) 79–87. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Robotics