World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue: Active Exoskeletons; Guest Editor: Miomir VukobratovicNo Access

A QUASI-PASSIVE LEG EXOSKELETON FOR LOAD-CARRYING AUGMENTATION

    A quasi-passive leg exoskeleton is presented for load-carrying augmentation during walking. The exoskeleton has no actuators, only ankle and hip springs and a knee variable-damper. Without a payload, the exoskeleton weighs 11.7 kg and requires only 2 Watts of electrical power during loaded walking. For a 36 kg payload, we demonstrate that the quasi-passive exoskeleton transfers on average 80% of the load to the ground during the single support phase of walking. By measuring the rate of oxygen consumption on a study participant walking at a self-selected speed, we find that the exoskeleton slightly increases the walking metabolic cost of transport (COT) as compared to a standard loaded backpack (10% increase). However, a similar exoskeleton without joint springs or damping control (zero-impedance exoskeleton) is found to increase COT by 23% compared to the loaded backpack, highlighting the benefits of passive and quasi-passive joint mechanisms in the design of efficient, low-mass leg exoskeletons.

    References

    • C.   Fletcher , The Complete Walker ( Alfred Knopf , New York , 1974 ) . Google Scholar
    • V. Louhevaaraet al., J. Occup. Med. 27, 213 (1985). Google Scholar
    • B. J. Makinson, Research and development prototype for machine augmentation of human strength and endurance, Hardiman I Prototype Project, Report S-71-1056 (General Electric Company, Schenectady, New York, 1971) . Google Scholar
    • H. Kazarooni, J. Robot. Autonom. Syst. 19, 179 (1996). Crossref, ISIGoogle Scholar
    • J. Prattet al., The RoboKnee: An exoskeleton for enhancing strength and endurance during walking, IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE Press, 2006) pp. 2430–2435. Google Scholar
    • H. Kawamoto and Y. Sankai, EMG-based hybrid assistive leg for walking aid using feedforward controller, Int. Conf. Control, Automation and Systems (2001) pp. 190–193. Google Scholar
    • M. Vukobratoviet al., Biped Locomotion: Dynamics, Stability, Control, and Application (Springer-Verlag, Berlin, 1990) pp. 321–330. CrossrefGoogle Scholar
    • A. Chu, H. Kazerooni and A. Zoss, On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE Press, Barcelona, Spain, 2006) pp. 4356–4363. Google Scholar
    • G. T. Huang, Demo: Wearable robots, Tech. Rev. (July/August, 2004) . Google Scholar
    • X. Liu, K. H. Low and H. Y. Yu, Development of a lower extremity exoskeleton for human performance enhancement, IEEE Int. Conf. Intelligent Robots and Systems (IROS) (IEEE Press, 2004) pp. 3889–3894. Google Scholar
    • G. A. Cavagna and M. Kaneko, J. Appl. Physiol. 268, 467 (1977). ISIGoogle Scholar
    • S. Mochon and T. A. McMahon, J. Biomech. 13, 49 (1980), DOI: 10.1016/0021-9290(80)90007-X. Crossref, ISIGoogle Scholar
    • H. Geyer, A. Seyfarth and R. Blickman, Proc. Biol. Sci. 273(1603), 2861 (2006), DOI: 10.1098/rspb.2006.3637. Crossref, ISIGoogle Scholar
    • K. Endo, D. Paluska and H. Herr, A quasi-passive model of human leg function in level-ground walking, IEEE Int. Conf. Intelligent Robots and Systems (IROS) (IEEE Press, 2006) pp. 4935–4939. Google Scholar
    • L. J. Marks and J. W. Michael, Brit. Med. J. 323, 732 (2001), DOI: 10.1136/bmj.323.7315.732. CrossrefGoogle Scholar
    • W. C. Flowers, A man-interactive simulator system for above-knee prosthetics studies, Ph.D. thesis, Massachusetts Institute of Technology (1972) . Google Scholar
    • K. Jameset al., Active suspension above-knee prosthesis, 6th Int. Conf. Biomechanical Engineering, ed. J. C. Goh (1990) pp. 317–320. Google Scholar
    • I.   Kitayama , N.   Nakagawa and K.   Amemori , A microcomputer controlled intelligent A/K prosthesis , Proc. 7th World Congress Int. Society for Prosthetics and Orthotics ( 1992 ) . Google Scholar
    • S.   Zahedi , The results of the field trial of the Endolite Intelligent Prosthesis , XII Int. Congress of INTERBOR ( 1993 ) . Google Scholar
    • H. Herr and A. Wilkenfeld, Ind. Robot. 30, 42 (2003), DOI: 10.1108/01439910310457706. Crossref, ISIGoogle Scholar
    • T. McGeer, Int. J. Robot. Res. 62 (1990), DOI: 10.1177/027836499000900206. Google Scholar
    • M. Wisse, Essentials of dynamic walking, analysis and design of two-legged robots, Ph.D. thesis, Technical University of Delft (2004) . Google Scholar
    • S. H. Collins and A. Ruina, A bipedal walking robot with efficient and human-like gait, IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE Press, 2005) pp. 1983–1988. Google Scholar
    • H. Herr, C. J. Walsh, D. J. Paluska, A. Valiente and K. Pasch, Exoskeletons for walking and running, US Provisional Application Serial No. 60/736, 929 (2005) . Google Scholar
    • C. J. Walsh, Biomimetic design of an under-actuated leg exoskeleton for load-carrying augmentation, M.S. thesis, Massachusetts Institute of Technology (2006) . Google Scholar
    • C. J. Walshet al., Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE Press, 2006) pp. 3485–3491. Google Scholar
    • K. N.   Gregorczyk et al. , The effects of a lower body exoskeleton load carriage assistive device on oxygen consumption and kinematics during walking with loads , 25th Army Sci. Conf. ( 2006 ) . Google Scholar
    • M. L. Palmer, Sagittal plane characterization of normal human ankle function across a range of walking gait speeds, M.S. thesis, Massachusetts Institute of Technology (2002) . Google Scholar
    • V. T. Inman, H. J. Ralston and F. Todd, Human Walking, eds. J. Rose and J. G. Gamble (Williams and Wilkins, Baltimore, 1981) p. 91. Google Scholar
    • C. J. Walsh, K. Pasch and H. Herr, An autonomous, underactuated exoskeleton for load-carrying augmentation, IEEE Int. Conf. Intelligent Robots and Systems (IROS) (IEEE Press, 2006) pp. 1410–1415. Google Scholar
    • E. Harman, K. Han, P. Frykman and C. Pandorf, The effects of backpack weight on the biomechanics of load carriage, USARIEM Technical Report, Natick, MA (2000) . Google Scholar
    • C. Hausswirth, A. X. Bigard and J. M. Lechevelier, Int. J. Sports Med. 18, 449 (1997), DOI: 10.1055/s-2007-972642. ISIGoogle Scholar
    • J. M. Brockway, Hum. Nutr. Clin. Nutr. 41, 463 (1987). Google Scholar
    • T. A. McMahon, G. Valiant and E. C. Frederick, J. Appl. Physiol. 62(6), 2326 (1987). Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Robotics