World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The role of localizable concurrence in quantum teleportation protocols

    https://doi.org/10.1142/S0219749921500246Cited by:1 (Source: Crossref)

    Teleporting an unknown qubit state is a paradigmatic quantum information processing task revealing the advantage of quantum communication protocols over their classical counterpart. For a teleportation protocol using a Bell state as quantum channel, the resource has been identified to be the concurrence. However, for mixed multipartite states the lack of computable entanglement measures has made the identification of the quantum resource responsible for this advantage more challenging. Here, by building on previous results showing that localizable concurrence is the necessary resource for controlled quantum teleportation, we show that any teleportation protocol using an arbitrary multipartite state, that includes a Bell measurement, requires a nonvanishing localizable concurrence between two of its parties to perform better than the classical protocol. By first analyzing Greenberger–Horne–Zeilinger (GHZ) channel and GHZ measurement teleportation protocol, in the presence of GHZ-symmetric-preserving noise, we compare different multipartite entanglement measures with the fidelity of teleportation, and we find that the protocol performs better than the classical protocol when all multipartite entanglement measures vanish, except for the localizable concurrence. Finally, we extend our proof to an arbitrary teleportation protocol with an arbitrary multipartite entangled channel.

    References

    Remember to check out the Most Cited Articles!

    Check out Annual Physics Catalogue 2019 and recommend us to your library!