World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Quantum distance-based classifier with distributed knowledge and state recycling

    https://doi.org/10.1142/S0219749918400130Cited by:3 (Source: Crossref)
    This article is part of the issue:

    In this work, we examine a recently proposed distance-based classification method designed for near-term quantum processing units with limited resources. We study possibilities to reduce the quantum resources without any efficiency decrease. We show that only a part of the information undergoes coherent evolution and this fact allows us to introduce an algorithm with significantly reduced quantum system size requirements. Additionally, considering only partial information at a time, we propose a classification protocol with information distributed among a number of agents. Finally, we show that the information evolution during a measurement can lead to a better solution and that the accuracy of the algorithm can be improved by harnessing the state after the final measurement.

    References

    • 1. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Nature 549 (7671) (2017) 195. Crossref, Web of ScienceGoogle Scholar
    • 2. M. Schuld, I. Sinayskiy and F. Petruccione, Contemp. Phys. 56 (2) (2015) 172. Crossref, Web of ScienceGoogle Scholar
    • 3. S. Lloyd, M. Mohseni and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv:1307.0411. Google Scholar
    • 4. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, J. M. Martinis and H. Neven, Characterizing quantum supremacy in near-term devices, arXiv:1608.00263. Google Scholar
    • 5. E. Farhi and A. W. Harrow, Quantum Supremacy through the Quantum Approximate Optimization Algorithm, arXiv:1602.07674. Google Scholar
    • 6. V. N. Smelyanskiy, E. G. Rieffel, S. I. Knysh, C. P. Williams, M. W. Johnson, M. C. Thom, W. G. Macready and K. L Pudenz, A near-term quantum computing approach for hard computational problems in space exploration, arXiv:1204.2821. Google Scholar
    • 7. N. Wiebe, C. Granade, C. Ferrie and D. G. Cory, Phys. Rev. Lett. 112 (19) (2014) 190501. Crossref, Web of ScienceGoogle Scholar
    • 8. D. Ristè, M. P. Da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow and B. R. Johnson, NPJ Quantum Inf. 3 (1) (2017) 16. Crossref, Web of ScienceGoogle Scholar
    • 9. M. Schuld, M. Fingerhuth and F. Petruccione, EPL (Europhys. Lett.) 119 (6) (2017) 60002. CrossrefGoogle Scholar
    • 10. A. Elisseeff and J. Weston, A kernel method for multi-labelled classification, in Advances in Neural Information Processing Systems (Neural Information Processing Systems Foundation, 2002), pp. 681–687. CrossrefGoogle Scholar
    • 11. S. Sridharan, M. Gu, M. R. James and W. M. McEneaney, Phys. Rev. A 82 (4) (2010) 042319. Crossref, Web of ScienceGoogle Scholar
    • 12. S. Przemysław, Int. J. Quantum Inf. 11 (7) (2013) 1350067. Link, Web of ScienceGoogle Scholar
    • 13. S. Attal, F. Petruccione and I. Sinayskiy, Phys. Lett. A 376 (18) (2012) 1545. Crossref, Web of ScienceGoogle Scholar
    • 14. Ł. Pawela, P. Gawron, J. A. Miszczak and P. Sadowski, PLoS ONE 10 (7) (2015) e0130967. Crossref, Web of ScienceGoogle Scholar
    • 15. N. Konno and H. J. Yoo, J. Statistic. Phys. 150 (2) (2013) 299. Crossref, Web of ScienceGoogle Scholar
    • 16. P. Sadowski and Ł. Pawela, Quantum Inf. Process. 15 (7) (2016) 2725. Crossref, Web of ScienceGoogle Scholar
    • 17. S. Attal, N. Guillotin-Plantard and C. Sabot, Central limit theorems for open quantum random walks and quantum measurement records, in Annales Henri Poincaré, Vol. 16 (Springer, 2015), pp. 15–43. CrossrefGoogle Scholar
    • 18. J. A. Miszczak and P. Sadowski, Quantum Inf. Comput. 14 (13&14) (2014) 1238. Web of ScienceGoogle Scholar
    • 19. M. Bednarska, A. Grudka, P. Kurzyński, T. Łuczak and A. Wójcik, Phys. Lett. A 317 (1) (2003) 21. Crossref, Web of ScienceGoogle Scholar
    • 20. E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou and J. L. O’brien, Nature Photonic. 6 (11) (2012) 773. Crossref, Web of ScienceGoogle Scholar
    • 21. N. Konno, Quantum walks, in Quantum Potential Theory (Springer, 2008), pp. 309. CrossrefGoogle Scholar
    • 22. P. Sadowski, J. A. Miszczak and M. Ostaszewski, J. Phys. A: Math. Theo. 49 (37) (2016) 375302. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out Annual Physics Catalogue 2019 and recommend us to your library!