World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Comparing the topology of phylogenetic network generators

    https://doi.org/10.1142/S0219720021400126Cited by:8 (Source: Crossref)
    This article is part of the issue:

    Phylogenetic networks represent evolutionary history of species and can record natural reticulate evolutionary processes such as horizontal gene transfer and gene recombination. This makes phylogenetic networks a more comprehensive representation of evolutionary history compared to phylogenetic trees. Stochastic processes for generating random trees or networks are important tools in evolutionary analysis, especially in phylogeny reconstruction where they can be utilized for validation or serve as priors for Bayesian methods. However, as more network generators are developed, there is a lack of discussion or comparison for different generators. To bridge this gap, we compare a set of phylogenetic network generators by profiling topological summary statistics of the generated networks over the number of reticulations and comparing the topological profiles.

    References

    • 1. Huson DH, Rupp R, Scornavacca C, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2010. CrossrefGoogle Scholar
    • 2. Elworth RL, Ogilvie HA, Zhu J, Nakhleh L, Advances in computational methods for phylogenetic networks in the presence of hybridization, in Bioinformatics and Phylogenetics, Springer, pp. 317–360, 2019. CrossrefGoogle Scholar
    • 3. Blair C, Ané C, Phylogenetic trees and networks can serve as powerful and complementary approaches for analysis of genomic data, System Biol 69(3) :593–601, 2020. Crossref, MedlineGoogle Scholar
    • 4. Blais C, Archibald JM, The past, present and future of the tree of life, Current Biol 31(7) :R314–R321, 2021. Crossref, MedlineGoogle Scholar
    • 5. Bordewich M, Semple C, Determining phylogenetic networks from inter-taxa distances, J Math Biol 73(2) :283–303, 2016. Crossref, MedlineGoogle Scholar
    • 6. Bordewich M et al., Recovering normal networks from shortest inter-taxa distance information, J. Math Biol 77(3) :571–594, 2018. Crossref, MedlineGoogle Scholar
    • 7. van Iersel L, Moulton V, Murakami Y, Reconstructibility of unrooted level-k phylogenetic networks from distances, Adv Appl Math 120 :102075, 2020. CrossrefGoogle Scholar
    • 8. Baroni M et al., Bounding the number of hybridisation events for a consistent evolutionary history, J Math Biol 51(2) :171–182, 2005. Crossref, MedlineGoogle Scholar
    • 9. Linz S, Semple C, Attaching leaves and picking cherries to characterise the hybridisation number for a set of phylogenies, Adv Appl Math 105 :102–129, 2019. CrossrefGoogle Scholar
    • 10. Whidden C, Beiko RG, Zeh N, Fixed-parameter algorithms for maximum agreement forests, SIAM J Comput 42(4) :1431–1466, 2013. CrossrefGoogle Scholar
    • 11. van Iersel L, Janssen R, Jones M, Murakami Y, Zeh N, A practical fixed-parameter algorithm for constructing tree-child networks from multiple binary trees, arXiv:190708474. Google Scholar
    • 12. van Iersel L, Janssen R, Jones M, Murakami Y, Zeh N, Polynomial-time algorithms for phylogenetic inference problems involving duplication and reticulation, IEEE/ACM Transac Comput Biol Bioinf 17(1) :14–26, 2019. CrossrefGoogle Scholar
    • 13. Zhang C, Ogilvie HA, Drummond AJ, Stadler T, Bayesian inference of species networks from multilocus sequence data, Molecular Biol Evol 35(2) :504–517, 2018. Crossref, MedlineGoogle Scholar
    • 14. Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L, Bayesian inference of phylogenetic networks from bi-allelic genetic markers, PLoS Comput Biol 14(1) :e1005932, 2018. Crossref, MedlineGoogle Scholar
    • 15. Yu Y, Nakhleh L, A maximum pseudo-likelihood approach for phylogenetic networks, BMC Genom 16(10) :1–10, 2015. MedlineGoogle Scholar
    • 16. Solís-Lemus C, Ané C, Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting, PLoS Gen 12(3) :e1005896, 2016. Crossref, MedlineGoogle Scholar
    • 17. van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T, Constructing level-2 phylogenetic networks from triplets, IEEE/ACM Trans Comput Biol Bioinf 6(4) :667–681, 2009. Crossref, MedlineGoogle Scholar
    • 18. Pons JC, Scornavacca C, Cardona G, Generation of level-k lgt networks, IEEE/ACM Trans Comput Biol Bioinf 17(1) :158–164, 2019. MedlineGoogle Scholar
    • 19. Harding EF, The probabilities of rooted tree-shapes generated by random bifurcation, Advances in Applied Probability 3(1) :44–77, 1971. CrossrefGoogle Scholar
    • 20. Morin MM, Moret BM, Netgen: generating phylogenetic networks with diploid hybrids, Bioinformatics 22(15) :1921–1923, 2006. Crossref, MedlineGoogle Scholar
    • 21. Zhang L, On tree-based phylogenetic networks, J Comput Biol 23(7) :553–565, 2016. Crossref, MedlineGoogle Scholar
    • 22. Gambette P, van Iersel L, Jones M, Lafond M, Pardi F, Scornavacca C, Rearrangement moves on rooted phylogenetic networks, PLoS Comput Biol 13(8) :e1005611, 2017. Crossref, MedlineGoogle Scholar
    • 23. Janssen R, Rearranging phylogenetic networks, Ph.D. thesis, Delft University of Technology, 2021. Google Scholar
    • 24. Aldous D, Probability distributions on cladograms, in Random discrete structures, Springer, pp. 1–18, 1996. CrossrefGoogle Scholar
    • 25. Heath TA, Zwickl DJ, Kim J, Hillis DM, Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees, System Biol 57(1) :160–166, 2008. Crossref, MedlineGoogle Scholar
    • 26. Blum MG, François O, Which random processes describe the tree of life? a large-scale study of phylogenetic tree imbalance, System Biol 55(4) :685–691, 2006. Crossref, MedlineGoogle Scholar
    • 27. Steel M, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016. CrossrefGoogle Scholar
    • 28. Liu P, Biller P, Gould M, Colijn C, Polynomial phylogenetic analysis of tree shapes, bioRxiv:2020. Google Scholar
    • 29. Choi KP, Thompson A, Wu T, On cherry and pitchfork distributions of random rooted and unrooted phylogenetic trees, Theor. Population Biol 132 :92–104, 2020. Crossref, MedlineGoogle Scholar
    • 30. Bienvenu F, Cardona G, Scornavacca C, Revisiting shao and sokal’s b2 index of phylogenetic balance, arXiv:201008079. Google Scholar
    • 31. Liu P, A tree distinguishing polynomial, Discrete Appl Math 288 :1–8, 2021. CrossrefGoogle Scholar
    • 32. Francis A, Moulton V, Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution, J Theor Biol 446 :160–167, 2018. Crossref, MedlineGoogle Scholar
    • 33. Lance GN, Williams WT, Computer programs for hierarchical polythetic classification (“Similarity Analyses”), Comput J 9(1) :60–64, 1966. CrossrefGoogle Scholar
    • 34. Cox M, Cox M, Multidimensional Scaling, Chapman and Hall, 2001. Google Scholar
    • 35. Kaufman L, Rousseeuw PJ, Finding Groups in Data: An Introduction to Cluster Analysis, Hoboken, New Jersey: John Wiley & Sons, Inc., 2009. Google Scholar
    • 36. Bryant D, Tupper PF, Hyperconvexity and tight-span theory for diversities, Adv Math 231(6) :3172–3198, 2012. CrossrefGoogle Scholar
    • 37. Morando M et al., Phylogenomic data resolve higher-level relationships within south american liolaemus lizards, Molecul Phylogen Evol 147 :106781, 2020. Crossref, MedlineGoogle Scholar
    • 38. Yang W et al., Extensive introgression and mosaic genomes of mediterranean endemic lizards, Nat Commun 12(1) :1–8, 2021. MedlineGoogle Scholar
    • 39. Cuypers T, Hogeweg P, Endless evolutionary paths to virtual microbes, Workshop, First EvoEvo Workshop, Satellite Workshop of ECAL2015, 2015. Google Scholar
    • 40. van Dijk B, Cuypers T, Hogeweg P, Evolution of r-and k-selected species of virtual microbes: A case study in a simple fluctuating 2-resource environment, 2nd EvoEvo Workshop, Satellite Workshop of CCS2016, 2016. Google Scholar
    • 41. van Dijk B, Hogeweg P, Doekes HM, Takeuchi N, Slightly beneficial genes are retained by bacteria evolving dna uptake despite selfish elements, Elife 9 :e56801, 2020. Crossref, MedlineGoogle Scholar
    • 42. Wen D, Yu Y, Nakhleh L, Bayesian inference of reticulate phylogenies under the multispecies network coalescent, PLoS Gen 12(5) :e1006006, 2016. Crossref, MedlineGoogle Scholar
    • 43. Bordewich M, Linz S, Semple C, Lost in space? generalising subtree prune and regraft to spaces of phylogenetic networks, J Theo Biol 423 :1–12, 2017. Crossref, MedlineGoogle Scholar
    • 44. Klawitter J, Spaces of phylogenetic networks, Ph.D. thesis, University of Auckland, in preparation, 2020. Google Scholar
    • 45. Shao KT, Tree balance, System Zool 39(3) :266–276, 1990. Google Scholar
    • 46. Gusfield D, Bansal V, A fundamental decomposition theory for phylogenetic networks and incompatible characters, Ann Int Conf Res Comput Molecul Biol, Springer, pp. 217–232, 2005. CrossrefGoogle Scholar
    • 47. Francis AR, Steel M, Which phylogenetic networks are merely trees with additional arcs?, System Biol 64(5) :768–777, 2015. Crossref, MedlineGoogle Scholar
    • 48. Janssen R, Murakami Y, On cherry-picking and network containment, Theor Comput Sci 856 :121–150, 2021. CrossrefGoogle Scholar
    • 49. Erdős PL, Semple C, Steel M, A class of phylogenetic networks reconstructable from ancestral profiles, Math Biosci 313 :33–40, 2019. Crossref, MedlineGoogle Scholar
    • 50. Semple C, Simpson J, When is a phylogenetic network simply an amalgamation of two trees?, Bull Math Biol 80(9) :2338–2348, 2018. Crossref, MedlineGoogle Scholar
    • 51. Cardona G, Rosselló F, Valiente G, Comparison of tree-child phylogenetic networks, IEEE/ACM Trans Comput Biol Bioinf 6(4) :552–569, 2008. CrossrefGoogle Scholar
    • 52. Huber KT, van Iersel L, Janssen R, Jones M, Moulton V, Murakami Y, Semple C, Rooting for phylogenetic networks, arXiv:190607430. Google Scholar
    • 53. van Iersel L, Janssen R, Jones M, Murakami Y, Zeh N, A unifying characterization of tree-based networks and orchard networks using cherry covers, arXiv:200407677. Google Scholar
    • 54. Sainudiin R, Véber A, A beta-splitting model for evolutionary trees, Roy Soc Open Sci 3(5): 160016, 2016. Crossref, MedlineGoogle Scholar
    • 55. Janssen R, Jones M, Erdős PL, van Iersel L, Scornavacca C, Exploring the tiers of rooted phylogenetic network space using tail moves, Bull Math Biol 80(8) :2177–2208, 2018. Crossref, MedlineGoogle Scholar