World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Small parsimony for natural genomes in the DCJ-indel model

    https://doi.org/10.1142/S0219720021400096Cited by:3 (Source: Crossref)
    This article is part of the issue:

    The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.e. genomes that contain conserved, unique, and duplicated markers. The evolutionary model that we consider is the DCJ-indel model that includes the Double-Cut and Join rearrangement operation and the insertion and deletion of genome segments. We evaluate our algorithm on simulated data and show that it is able to reconstruct very efficiently and accurately ancestral gene orders in a very comprehensive evolutionary model.

    The complete paper is available at https://arxiv.org/abs/2108.04297.

    References