World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback

    https://doi.org/10.1142/S0219720016410055Cited by:7 (Source: Crossref)

    Gene network simulations are increasingly used to quantify mutual gene regulation in biological tissues. These are generally based on linear interactions between single-entity regulatory and target genes. Biological genes, by contrast, commonly have multiple, partially independent, cis-regulatory modules (CRMs) for regulator binding, and can produce variant transcription and translation products. We present a modeling framework to address some of the gene regulatory dynamics implied by this biological complexity. Spatial patterning of the hunchback (hb) gene in Drosophila development involves control by three CRMs producing two distinct mRNA transcripts. We use this example to develop a differential equations model for transcription which takes into account the cis-regulatory architecture of the gene. Potential regulatory interactions are screened by a genetic algorithms (GAs) approach and compared to biological expression data.

    References

    • 1. M Levine and EH Davidson, Gene regulatory networks for development, Proc Natl Acad Sci USA 102 (14) (2005) 4936–4942. Crossref, MedlineGoogle Scholar
    • 2. DH Erwin and EH Davidson, The evolution of hierarchical gene regulatory networks, Nat Rev Genet 10 (2009) 141–148. Crossref, MedlineGoogle Scholar
    • 3. EH Davidson, Emerging properties of animal gene regulatory networks, Nature 468 (7326) (2010) 911–920. Crossref, MedlineGoogle Scholar
    • 4. B Haibe-Kains and F Emmert-Streib, Quantitative assessment and validation of network inference methods in bioinformatics, Front Genet 5 (2014) 221. Crossref, MedlineGoogle Scholar
    • 5. AV Spirov and DM Holloway, Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks, Methods 62 (1) (2013) 39–55. Crossref, MedlineGoogle Scholar
    • 6. DM Umulis, O Shimmi, MB O’Connor and HG Othmer, Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins, Dev Cell 18 (2) (2010) 260–274. Crossref, MedlineGoogle Scholar
    • 7. J Jaeger, Manu and J Reinitz, Drosophila blastoderm patterning, Curr Opin Genet Dev 22 (6) (2012) 533–541. Crossref, MedlineGoogle Scholar
    • 8. J Jaeger, The gap gene network, Cell Mol Life Sci 68 (2) (2011) 243–274. Crossref, MedlineGoogle Scholar
    • 9. MD Schroeder, C Greer and U Gaul, How to make stripes: Deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation, Development 138 (14) (2011) 3067–3078. Crossref, MedlineGoogle Scholar
    • 10. E Mjolsness, DH Sharp and J Reinitz, A connectionist model of development, J Theor Biol 152 (4) (1991) 429–453. Crossref, MedlineGoogle Scholar
    • 11. J Jaeger, S Surkova, M Blagov, H Janssens, D Kosman, KN Kozlov, Manu, E Myasnikova, CE Vanario-Alonso, M Samsonova, DH Sharp and J Reinitz, Dynamic control of positional information in the early Drosophila embryo, Nature 430 (2004) 368–371. Crossref, MedlineGoogle Scholar
    • 12. Manu, S Surkova, AV Spirov, VV Gursky, H Janssens, A-R Kim, O Radulescu, CE Vanario-Alonso, DH Sharp, M Samsonova and J Reinitz, Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation, PLoS Biol 7 (3) (2009) e1000049. Crossref, MedlineGoogle Scholar
    • 13. Manu, S Surkova, AV Spirov, VV Gursky, H Janssens, A-R Kim, O Radulescu, CE Vanario-Alonso, DH Sharp, M Samsonova and J Reinitz, Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors, PLoS Comput Biol 5 (3) (2009) e1000303. Crossref, MedlineGoogle Scholar
    • 14. VV Gursky, L Panok, EM Myasnikova, Manu, MG Samsonova, J Reinitz and AM Samsonov, Mechanisms of gap gene expression canalization in the Drosophila blastoderm, BMC Syst Biol 5 (2011) 118. Crossref, MedlineGoogle Scholar
    • 15. A Kuzin, M Kundu, A Ekatomatis, T Brody and WF Odenwald, Conserved sequence block clustering and flanking inter-cluster flexibility delineate enhancers that regulate nerfin-1 expression during Drosophila CNS development, Gene Expr Patterns 9 (2) (2009) 65–72. Crossref, MedlineGoogle Scholar
    • 16. M Fujioka and JB Jaynes, Regulation of a duplicated locus: Drosophila sloppy paired is replete with functionally overlapping enhancers, Dev Biol 362 (2012) 309–319. Crossref, MedlineGoogle Scholar
    • 17. S Barolo, Shadow enhancers: Frequently asked questions about distributed cis-regulatory information and enhancer redundancy, Bioessays 34 (2) (2012) 135–141. Crossref, MedlineGoogle Scholar
    • 18. A Kuzin, M Kundu, J Ross, K Koizumi, T Brody and WF Odenwald, The cis-regulatory dynamics of the Drosophila CNS determinant castor are controlled by multiple sub-pattern enhancers, Gene Expr Patterns 12 (7–8) (2012) 261–272. Crossref, MedlineGoogle Scholar
    • 19. G Bejerano, AC Siepel, WJ Kent and D Haussler, Computational screening of conserved genomic DNA in search of functional noncoding elements, Nat Methods 2 (7) (2005) 535–545. Crossref, MedlineGoogle Scholar
    • 20. M Kundu, A Kuzin, T-Y Lin, C-H Lee, T Brody and WF Odenwald, Cis-regulatory complexity within a large non-coding region in the Drosophila genome, PLOS ONE 8 (2013) e60137. Crossref, MedlineGoogle Scholar
    • 21. JW Hong, DA Hendrix and MS Levine, Shadow enhancers as a source of evolutionary novelty, Science 321 (5894) (2008) 1314. Crossref, MedlineGoogle Scholar
    • 22. M Hülskamp, C Pfeifle and D Tautz, A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo, Nature 346 (6284) (1990) 577–580. Crossref, MedlineGoogle Scholar
    • 23. D Yu and S Small, Precise registration of gene expression boundaries by a repressive morphogen in Drosophila, Curr Biol 18 (12) (2008) 868–876. Crossref, MedlineGoogle Scholar
    • 24. F Bonneton, PJ Shaw, C Fazakerley, M Shi and GA Dover, Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster, Mech Dev 66 (1–2) (1997) 143–156. Crossref, MedlineGoogle Scholar
    • 25. AP McGregor, PJ Shaw and GA Dover, Sequence and expression of the hunchback gene in Lucilia sericata: A comparison with other Dipterans, Dev Genes Evol 211 (2001) 315–318. Crossref, MedlineGoogle Scholar
    • 26. AP McGregor, PJ Shaw, JM Hancock, D Bopp, M Hediger, NS Wratten and GA Dover, Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: Implications for molecular coevolution, Evol Dev 3 (6) (2001) 397–407. Crossref, MedlineGoogle Scholar
    • 27. JS Margolis, ML Borowsky, E Steingrimsson, GW Shim, JA Lengyel and JW Posakony, Posterior stripe expression of hunchback is driven from 2 promoters by a common enhancer element, Development 121 (9) (1995) 3067–3077. Crossref, MedlineGoogle Scholar
    • 28. E Wimmer, A Carleton, P Harjes, T Turner and C Desplan, Bicoid-independent formation of thoracic segments in Drosophila, Science 287 (5462) (2000) 2476–2479. Crossref, MedlineGoogle Scholar
    • 29. MW Perry, JP Bothma, RD Luu and M Levine, Precision of hunchback expression in the Drosophila embryo, Curr Biol 22 (23) (2012) 2247–2252. Crossref, MedlineGoogle Scholar
    • 30. E Segal, T Raveh-Sadka, M Schroeder, U Unnerstall and U Gaul, Predicting expression patterns from regulatory sequence in Drosophila segmentation, Nature 451 (7178) (2008) 535–540. Crossref, MedlineGoogle Scholar
    • 31. H Janssens, S Hou, J Jaeger, AR Kim, E Myasnikova, D Sharp and J Reinitz, Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene, Nat Genet 38 (10) (2006) 1159–1165. Crossref, MedlineGoogle Scholar
    • 32. E Segal, T Raveh-Sadka, M Schroeder, U Unnerstall and U Gaul, Predicting expression patterns from regulatory sequence in Drosophila segmentation, Nature 451 (2008) 535–540. Crossref, MedlineGoogle Scholar
    • 33. AV Spirov, T Bowler and J Reinitz, HOXPro: A specialized database for clusters and networks of homeobox genes, Nucleic Acids Res 28 (1) (2000) 337–340. Crossref, MedlineGoogle Scholar
    • 34. AV Spirov, M Borovsky and OA Spirova, HOX Pro DB: The functional genomics of hox ensembles, Nucleic Acids Res 30 (1) (2002) 351–353. Crossref, MedlineGoogle Scholar
    • 35. XY Li, S MacArthur, R Bourgon, D Nix, DA Pollard, VN Iyer, A Hechmer, L Simirenko, M Stapleton, CL LuengoHendriks, HC Chu, N Ogawa, W Inwood, V Sementchenko, A Beaton, R Weiszmann, SE Celniker, DW Knowles, T Gingeras, TP Speed, MB Eisen and MD Biggin, Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm, PLoS Biol 6 (2008) e27. Crossref, MedlineGoogle Scholar
    • 36. K Kozlov, S Surkova, E Myasnikova, J Reinitz and M Samsonova, Modeling of gap gene expression in Drosophila Krüppel mutants, PLoS Comput Biol 8 (2012) e1002635. Crossref, MedlineGoogle Scholar
    • 37. S Surkova, E Golubkova, Manu, L Panok, L Mamon, J Reinitz and M Samsonova, Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants, Dev Biol 376 (2012) 99–112. CrossrefGoogle Scholar
    • 38. BP Berman, BD Pfeiffer, TR Laverty, SL Salzberg, GM Rubin, MB Eisen and SE Celniker, Computational identification of developmental enhancers: Conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura, Genome Biol 5 (2004) R61. Crossref, MedlineGoogle Scholar
    • 39. A Ochoa-Espinosa, G Yucel, L Kaplan, A Pare, N Pura, A Oberstein, D Papatsenko and S Small, The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila, Proc Natl Acad Sci USA 102 (2005) 4960–4965. Crossref, MedlineGoogle Scholar
    • 40. D Papatsenko, Y Goltsev and M Levine, Organization of developmental enhancers in the Drosophila embryo, Nucleic Acids Res 37 (2009) 5665–5677. Crossref, MedlineGoogle Scholar
    • 41. D Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley Longman, Reading, MA, USA, 1989). Google Scholar
    • 42. E Mjolsness, DH Sharp and J Reinitz, A connectionist model of development, J Theor Biol 152 (1991) 429–453. Crossref, MedlineGoogle Scholar
    • 43. MM Harrison, X-Y Li, T Kaplan, MR Botchan and MB Eisen, Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition, PLoS Genet 7 (10) (2011) e1002266. Crossref, MedlineGoogle Scholar
    • 44. M Hoch, E Seifert and H Jackle, Gene expression mediated by cis-acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback, EMBO J 10 (1991) 226–2278. CrossrefGoogle Scholar
    • 45. C Schroder, D Tautz, E Seifert and H Jaeckle, Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback, EMBO J 7 (1988) 2881–2887. Crossref, MedlineGoogle Scholar
    • 46. J Treisman and C Desplan, The Drosophila developmental gene products hunchback and Krüppel bind to the promoters of hunchback, Nature 341 (1989) 335–337. Crossref, MedlineGoogle Scholar
    • 47. X Wu, V Vasisht, D Kosman, J Reinitz and S Small , Thoracic patterning by the Drosophila gap gene hunchback, Dev Biol 237 (2001) 79–92. Crossref, MedlineGoogle Scholar
    • 48. D Papatsenko and MS Levine, Dual regulation by the hunchback gradient in the Drosophila embryo, Proc Natl Acad Sci USA 105 (8) (2008) 2901–2906. Crossref, MedlineGoogle Scholar
    • 49. AV Spirov, EA Zagriychuk and DM Holloway, Evolutionary design of gene networks: Forced evolution by genomic parasites, Parallel Process Lett 24 (2011) 1440004. LinkGoogle Scholar
    • 50. EA Zagrijchuk, MA Sabirov, DM Holloway and AV Spirov, In silico evolution of the hunchback gene indicates redundancy in cis-regulatory organization and spatial gene expression, J Bioinform Comput Biol 12 (2) (2014) 1441009. LinkGoogle Scholar
    • 51. WH Press, SA Teukolsky, WT Vetterling and BP Flannery, Minimization or maximization of functions, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007), pp. 402–406. Google Scholar
    • 52. CC Fowlkes, CL Luengo Hendriks, SVE Keränen, GH Weber, O Rübel, M-Y Huang, S Chatoor, AH DePace, L Simirenko, C Henriquez, A Beaton, R Weiszmann, S Celniker, B Hamann, DW Knowles, MD Biggin, MB Eisen and J Malik, A quantitative spatio-temporal atlas of gene expression in the Drosophila blastoderm, Cell 133 (2008) 364–374. Crossref, MedlineGoogle Scholar
    • 53. E Poustelnikova, A Pisarev, M Blagov, M Samsonova and J Reinitz, A database for management of gene expression data in situ, Bioinformatics 20 (2004) 2212–2221. Crossref, MedlineGoogle Scholar
    • 54. DE Clyde, MS Corado, X Wu, A Paré, D Papatsenko and S Small, A self-organizing system of repressor gradients establishes segmental complexity in Drosophila, Nature 426 (2003) 849–853. Crossref, MedlineGoogle Scholar
    • 55. DM Holloway and AV Spirov, Mid-embryo patterning and precision in Drosophila segmentation: Krüppel dual regulation of hunchback, PLOS ONE 10 (3) (2015) e0118450. Crossref, MedlineGoogle Scholar
    • 56. JM Matthews, (ed.), Protein Dimerization and Oligomerizationin Biology (Springer Science Business Media, New York, 2012). CrossrefGoogle Scholar
    • 57. M Affolter, U Walldorf, U Kloter, AF Schier and WJ Gehring, Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers, Development 117 (1993) 1199–1210. Crossref, MedlineGoogle Scholar
    • 58. KA Cockerill, AN Billin and SJ Poole, Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila, Mech Dev 41 (1993) 139–153. Crossref, MedlineGoogle Scholar
    • 59. K Akagi and H Ueda, Regulatory mechanisms of ecdysone-inducible Blimp-1 encoding a transcriptional repressor that is important for the prepupal development in Drosophila, Dev Growth Differ 53 (5) (2011) 697–703. Crossref, MedlineGoogle Scholar
    • 60. DM Holloway, FJP Lopes, L da Fontoura Costa, BAN Travençolo, N Golyandina, K Usevich and AV Spirov, Gene expression noise in spatial patterning: Hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation, PLoS Comput Biol 7 (2011) e1001069. Crossref, MedlineGoogle Scholar
    • 61. W Driever, G Thoma and C Nusslein-Volhard, Determination of spatial domains of zygotic gene-expression in the Drosophila embryo by the affinity of binding-sites for the Bicoid morphogen, Nature 340 (1989) 363–367. Crossref, MedlineGoogle Scholar
    • 62. XG Ma, D Yuan, K Diepold, T Scarborough and J Ma, The Drosophila morphogenetic protein Bicoid binds DNA cooperatively, Development 122 (1996) 1195–1206. Crossref, MedlineGoogle Scholar
    • 63. FJP Lopes, CE Vanario-Alonso, PM Bisch and FMC Vieira, A kinetic mechanism for Drosophila Bicoid cooperative binding, J Theor Biol 235 (2005) 185–198. Crossref, MedlineGoogle Scholar
    • 64. D Lebrecht, M Foehr, E Smith, FJP Lopes, CE Vanario-Alonso, J Reinitz, DS Burz and SD Hanes, Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila, Proc Natl Acad Sci USA 102 (2005) 13176–13181. Crossref, MedlineGoogle Scholar
    • 65. G Struhl, K Struhl and PM Macdonald, The gradient morphogen Bicoid is a concentration-dependent transcriptional activator, Cell 57 (1989) 1259–1273. Crossref, MedlineGoogle Scholar
    • 66. W Driever and C Nusslein-Volhard, The Bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo, Nature 337 (1989) 138–143. Crossref, MedlineGoogle Scholar
    • 67. FJP Lopes, FMC Vieira, DM Holloway, PM Bisch and AV Spirov, Spatial bistability generates hunchback expression sharpness in the Drosophila embryo, PLoS Comput Biol 4 (2008) e1000184. Crossref, MedlineGoogle Scholar
    • 68. FJP Lopes, AV Spirov and PM Bisch, The role of Bicoid cooperative binding for patterning sharp borders in Drosophila melanogaster, Dev Biol 370 (2012) 165–172. Crossref, MedlineGoogle Scholar
    • 69. E Lecuyer, H Yoshida, N Parthasarathy, C Alm, T Babak, T Cerovina, TR Hughes, P Tomancak and HM Krause, Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function, Cell 131 (2007) 174–187. Crossref, MedlineGoogle Scholar