ODEion — A SOFTWARE MODULE FOR STRUCTURAL IDENTIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS
Abstract
In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data.
We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are:
• The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions.
• ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer.
• ODEion is easy to use and provides SBML output.
We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used.
Available at: http://www.odeidentification.org.
References
- Bioinformatics 25(6), 780 (2009), DOI: 10.1093/bioinformatics/btp050. Crossref, Medline, Google Scholar
- IET. Syst. Biol. 1, 120 (2007), DOI: 10.1049/iet-syb:20050098. Crossref, Medline, Google Scholar
- Wedelin D, Gennemark P, Web site with benchmarks for ODE identification problems. Available at http://www.odeidentification.org, 2008. Accessed 24 October 2013 . Google Scholar
-
G. D. Kattas , P. Gennemark and D. Wedelin , Structural identification of GMA models: Algorithm and model comparison , Proc. 8th Int. Conf. Computational Methods in Systems Biology ( ACM , New York, NY, USA , 2010 ) . Google Scholar - Proc. Natl. Acad. Sci. USA. 104(24), 9943 (2007), DOI: 10.1073/pnas.0609476104. Crossref, Medline, Google Scholar
- Science 324(5923), 81 (2009), DOI: 10.1126/science.1165893. Crossref, Medline, Google Scholar
- Phys. Biol. 8(5), 055011 (2011), DOI: 10.1088/1478-3975/8/5/055011. Crossref, Medline, Google Scholar
- Genome. Biol. 7(5), R36 (2006), DOI: 10.1186/gb-2006-7-5-r36. Crossref, Medline, Google Scholar
- PLoS One 6(3), e14791 (2011), DOI: 10.1371/journal.pone.0014791. Crossref, Medline, Google Scholar
- BMC. Syst. Biol. 6, 84 (2012), DOI: 10.1186/1752-0509-6-84. Crossref, Medline, Google Scholar
- Bioinformatics 19(4), 524 (2003), DOI: 10.1093/bioinformatics/btg015. Crossref, Medline, Google Scholar
- Biophys. J. 67, 560 (1994), DOI: 10.1016/S0006-3495(94)80516-8. Crossref, Medline, Google Scholar
- J. Phys. Chem. 99, 970 (1995), DOI: 10.1021/j100003a020. Crossref, Google Scholar
Y. Maki , Development of a system for the inference of large scale genetic networks, Pac Symp Biocomput (2001) pp. 446–458. Google Scholar- Bioinformatics 21, 1154 (2005), DOI: 10.1093/bioinformatics/bti071. Crossref, Medline, Google Scholar
- IET. Syst. Biol. 1, 174 (2007), DOI: 10.1049/iet-syb:20060064. Crossref, Medline, Google Scholar
-
M. A. Savageau , Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology ( Addison-Wesley , Reading, MA , 1976 ) . Google Scholar -
E. O. Voit , Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists ( Cambridge University Press , Cambridge , 2000 ) . Google Scholar - Ind. Eng. Chem. Res. 40, 2876 (2001), DOI: 10.1021/ie000544+. Crossref, Google Scholar
- Bioinformatics 24, 1085 (2008), DOI: 10.1093/bioinformatics/btn075. Crossref, Medline, Google Scholar
-
J. Monod , Recherches sur la Croissance des Cultures Bactriennes ( Hermann , Paris , 1941 ) . Google Scholar - Biotech. Lett. 23, 1087 (2001), DOI: 10.1023/A:1010599530577. Crossref, Google Scholar
- J. Symb. Comp. 33, 735 (2002), DOI: 10.1006/jsco.2002.0532. Crossref, Google Scholar