World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ALIASING IN GENE FEATURE DETECTION BY PROJECTIVE METHODS

    https://doi.org/10.1142/S0219720009004254Cited by:2 (Source: Crossref)

    Because of measurements obtained under limited experimental conditions or time points compared to the presence of many genes, also known as the "large dimension, small sample size" problem, dimensionality reduction techniques are a common practice in statistical bioinformatics involving microarray analysis. However, in order to improve the performance of reverse engineering and statistical inference procedures aimed to estimate gene–gene connectivity links, some kind of regularization is usually needed to reduce the overall data complexities, together with ad hoc feature selection to uncover biologically relevant gene associations. The paper deals with feature selection by projective methods; in particular, it addresses some issues: Can the impact of noise on the data be limited by shrinkage or de-noising? How can complexity from convoluted dynamics associated with microarray measurements be discounted? In modeling such data, how to deal with over-parametrization, and control it? The problem of aliasing is then discussed and classified into two categories according to the trade-off between biological relevance and noise, and finally reported in analytical form via subspace analysis.

    References