ALIASING IN GENE FEATURE DETECTION BY PROJECTIVE METHODS
Abstract
Because of measurements obtained under limited experimental conditions or time points compared to the presence of many genes, also known as the "large dimension, small sample size" problem, dimensionality reduction techniques are a common practice in statistical bioinformatics involving microarray analysis. However, in order to improve the performance of reverse engineering and statistical inference procedures aimed to estimate gene–gene connectivity links, some kind of regularization is usually needed to reduce the overall data complexities, together with ad hoc feature selection to uncover biologically relevant gene associations. The paper deals with feature selection by projective methods; in particular, it addresses some issues: Can the impact of noise on the data be limited by shrinkage or de-noising? How can complexity from convoluted dynamics associated with microarray measurements be discounted? In modeling such data, how to deal with over-parametrization, and control it? The problem of aliasing is then discussed and classified into two categories according to the trade-off between biological relevance and noise, and finally reported in analytical form via subspace analysis.
References
- Encyclopedia of Measurement and Statistics , ed.
N. J. Salkind ( Sage , Thousand Oaks (CA) , 2007 ) . Google Scholar , - Proc. Natl. Acad. Sci. USA 97(18), 10101 (2000), DOI: 10.1073/pnas.97.18.10101. Crossref, Medline, Google Scholar
- Proc. Natl. Acad. Sci. USA 101(47), 16577 (2004), DOI: 10.1073/pnas.0406767101. Crossref, Medline, Google Scholar
-
G. Strang , Introduction to Linear Algebra , 3rd edn. ( Wellesley-Cambridge Press , 2003 ) . Google Scholar - Proc. Natl. Acad. Sci. USA 98(4), 1693 (2001), DOI: 10.1073/pnas.98.4.1693. Crossref, Medline, Google Scholar
- Encyclopedia of Statistics in Behavioral Science 3, eds.
B. S. Everitt and D. C. Howell (Wiley, NY, 2005) pp. 1580–1584. Google Scholar , -
I. T. Jolliffe , Principal Component Analysis , 2nd edn. ( Springer , NY , 2002 ) . Google Scholar J. Cardoso , Source separation using higher order moments, Proc ASSP (1989) pp. 2109–2112. Google Scholar- Signal Processing 36(3), 287 (1994), DOI: 10.1016/0165-1684(94)90029-9. Crossref, Google Scholar
- J. Am. Stat. Assoc. 82(397), 249 (1987), DOI: 10.2307/2289161. Crossref, Google Scholar
- IEEE Trans. Comput. C 23(9), 881 (1974). Google Scholar
- Ann. Stat. 13(2), 435 (1985), DOI: 10.1214/aos/1176349519. Crossref, Google Scholar
- J. R. Stat. Soc. Ser. A 150, 1 (1987). Crossref, Google Scholar
- Independent Component Analysis. Principles and Practice, eds.
S. Roberts and R. Everson (Cambridge University Press, Cambridge, 2001) pp. 71–94. Crossref, Google Scholar , J. A. Berger , Identifying underlying factors in breast cancer using independent component analysis, Proc IEEE NNSP (2003) pp. 81–90. Google Scholar- J. Comput. Biol. 11(6), 1090 (2004), DOI: 10.1089/cmb.2004.11.1090. Crossref, Medline, Google Scholar
- Genome Biol. 4, R76 (2003), DOI: 10.1186/gb-2003-4-11-r76. Crossref, Medline, Google Scholar
- Bioinformatics 18, 51 (2002), DOI: 10.1093/bioinformatics/18.1.51. Crossref, Medline, Google Scholar
- J. Bioinform. Comput. Biol. 3(5), 1191 (2005), DOI: 10.1142/S0219720005001454. Link, Google Scholar
- Genome Inform. 12, 255 (2001). Google Scholar
- IEEE Trans. Neural. Netw. 10(3), 626 (1999), DOI: 10.1109/72.761722. Crossref, Medline, Google Scholar
- Neural Comput. 9(7), 1483 (1997), DOI: 10.1162/neco.1997.9.7.1483. Crossref, Google Scholar
- J. Mach. Learn Res. 1, 247 (2006). Google Scholar
- Phys. Lett. A 209, 321 (1995), DOI: 10.1016/0375-9601(95)00867-5. Crossref, Google Scholar
- Funct. Integr Genomics 8(2), 87 (2008), DOI: 10.1007/s10142-007-0066-3. Crossref, Medline, Google Scholar
- Nat. Genet. 27, 167 (2001), DOI: 10.1038/84792. Crossref, Medline, Google Scholar
- Proc. Natl. Acad. Sci. USA 104, 5959 (2007), DOI: 10.1073/pnas.0701068104. Crossref, Medline, Google Scholar
- Integr Bioinform Yearb, eds.
R. Hofestadt and T. Topel (2006) pp. 117–135. Google Scholar , - Neural Netw. 13(6), 589 (2000), DOI: 10.1016/S0893-6080(00)00041-1. Crossref, Medline, Google Scholar
- Phys. A 287, 383 (2000). Crossref, Google Scholar