World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.


    Gabardo and Nashed have studied nonuniform multiresolution analysis based on the theory of spectral pairs in a series of papers, see Refs. 4 and 5. Farkov,3 has extended the notion of multiresolution analysis on locally compact Abelian groups and constructed the compactly supported orthogonal p-wavelets on L2(ℝ+). We have considered the nonuniform multiresolution analysis on positive half-line. The associated subspace V0 of L2(ℝ+) has an orthonormal basis, a collection of translates of the scaling function φ of the form {φ(x ⊖ λ)}λ∈Λ+ where Λ+ = {0, r/N} + ℤ+, N > 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2N - 1 such that r and N are relatively prime and ℤ+ is the set of non-negative integers. We find the necessary and sufficient condition for the existence of associated wavelets and derive the analogue of Cohen's condition for the nonuniform multiresolution analysis on the positive half-line.

    AMSC: 42A38, 42A55, 42C15, 42C40, 43A70


    • M. K. Ahmad and J. Iqbal, Int. J. Wavelets, Multiresolut. Inf. Process. 7(5), 605 (2009). Link, ISIGoogle Scholar
    • I.   Daubechies , Ten Lectures on Wavelets ( SIAM , 1992 ) . CrossrefGoogle Scholar
    • Y. A. Farkov, Orthogonal p-wavelets on ℝ+, Proceedings of International Conference Wavelets and Splines (St. Petersberg State University, St. Petersberg, 2005) pp. 4–26. Google Scholar
    • Y. A. Farkov, A. Y. Maksimov and S. A. Stroganov, Int. J. Wavelets, Multiresolut. Inf. Process. 9(3), 485 (2011). Link, ISIGoogle Scholar
    • S. Fridli, P. Manchanda and A. H. Siddiqi, Acta Sci. Math. (Szeged) 74, 593 (2008). Google Scholar
    • J. P. Gabardo and M. Z. Nashed, J. Funct. Anal. 158, 209 (1998). Crossref, ISIGoogle Scholar
    • J. P. Gabardo and M. Z. Nashed, Contemp. Math. 216, 41 (1998). CrossrefGoogle Scholar
    • B. I.   Golubov , A. V.   Efimov and V. A.   Skvortsov , Walsh Series and Transforms ( Kluwer , Dordrecht , 1991 ) . CrossrefGoogle Scholar
    • W. C. Lang, SIAM J. Math. Anal. 27(1), 305 (1996). Crossref, ISIGoogle Scholar
    • W. C. Lang, Int. J. Math. Math. Sci. 21, 307 (1998). CrossrefGoogle Scholar
    • W. C. Lang, Houston J. Math. 24, 533 (1998). ISIGoogle Scholar
    • W. R. Madych, Wavelets: A Tutorial in Theory and Applications, ed. C. K. Chui (Academic Press, Boston, 1992) pp. 259–294. CrossrefGoogle Scholar
    • S. Mallat, Trans. Amer. Math. Soc. 315, 69 (1989). ISIGoogle Scholar
    • V. Y. Protasov and Y. A. Farkov, Sb. Math. 197(10), 1529 (2006). Crossref, ISIGoogle Scholar
    • F.   Schipp , W. R.   Wade and P.   Simon , Walsh Series: An Introduction to Dyadic Harmonic Analysis ( Adam Hilger Ltd. , Bristol, New York , 1990 ) . Google Scholar
    • F. A. Shah, Int. J. Wavelets, Multiresolut. Inf. Process. 7(5), 553 (2009). Link, ISIGoogle Scholar
    • D.   Walnut , An Introduction to Wavelet Analysis ( Birkhäuser , Boston , 2001 ) . Google Scholar
    • P.   Wojtaszczyk , A Mathematical Introduction to Wavelets , London Mathematical Society Student Texts   37 ( Cambridge Univ. Press , 1997 ) . CrossrefGoogle Scholar
    Published: 21 March 2012