FEATURE EXTRACTION OF MOTOR IMAGERY EEG BASED ON WAVELET TRANSFORM AND HIGHER-ORDER STATISTICS
Abstract
Feature extraction plays an important role in brain-computer interface (BCI) systems. In order to characterize the motor imagery related rhythm and higher-order statistics information contained within the EEG signals, a novel feature extraction method based on harmonic wavelet transform and bispectrum is developed and applied to the recognition of right and left motor imageries for developing EEG-based BCI systems. The experimental results on the Graz BCI data set have shown that the separability of the two classes features extracted by the proposed method is notable. Its performance was evaluated by a linear discriminant analysis (LDA) classifier. The recognition accuracy of 90% was obtained. The recognition results have demonstrated the effectiveness of the proposed method. This method provides an effective way for EEG feature extraction in BCI system.
References
- Clin. Neurophysiol. 113, 767 (2002), DOI: 10.1016/S1388-2457(02)00057-3. Crossref, ISI, Google Scholar
- IEEE Trans. Neural Syst. Rehabil. Eng. 14, 190 (2006), DOI: 10.1109/TNSRE.2006.875546. Crossref, ISI, Google Scholar
- IEEE Trans. Neural Syst. Rehabil. Eng. 15, 50 (2007), DOI: 10.1109/TNSRE.2007.891389. Crossref, ISI, Google Scholar
- Clin. Neurophysiol. 113, 767 (2002), DOI: 10.1016/S1388-2457(02)00057-3. Crossref, ISI, Google Scholar
- Mod. Phys. Lett. B 23(11), 1405 (2009), DOI: 10.1142/S0217984909019533. Link, ISI, Google Scholar
- Internat. J. Mod. Phys. B 22(30), 5365 (2008), DOI: 10.1142/S0217979208049509. Link, ISI, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 6(3), 391 (2008), DOI: 10.1142/S0219691308002252. Link, ISI, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 7(5), 617 (2009), DOI: 10.1142/S0219691309003124. Link, ISI, Google Scholar
M. Varsta , Evaluating the performance of three feature sets for brain-computer interfaces with an early stopping MLP committee, 15th International Conference on Pattern Recognition (ICPR–00) (2000) pp. 2907–2910. Google ScholarP. Mark and K. Aleksandar , Feature extraction in development of brain-computer interface: A case study, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1998) pp. 2058–2061. Google Scholar- IEEE Trans. Biomed. Eng. 51, 1052 (2004). ISI, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 7(2), 215 (2009), DOI: 10.1142/S0219691309002854. Link, ISI, Google Scholar
- Brain Topogr. 12, 177 (2004), DOI: 10.1023/A:1023437823106. Crossref, ISI, Google Scholar
- IEEE Trans. Neural Syst. Rehab. Eng. 13, 12 (2004), DOI: 10.1109/TNSRE.2004.841881. Crossref, ISI, Google Scholar
- IEEE Trans. Biomed. Eng. 45, 277 (2004), DOI: 10.1109/10.661153. Crossref, ISI, Google Scholar
- Clin. Neurophysiol. 115, 2744 (2000), DOI: 10.1016/j.clinph.2004.06.022. Crossref, ISI, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 7(4), 411 (2009), DOI: 10.1142/S0219691309002994. Link, ISI, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 5(6), 941 (2007), DOI: 10.1142/S0219691307002130. Link, ISI, Google Scholar
- J. Southeast Univ. Nat. Sci. 38(6), 996 (2008). Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 8(1), 33 (2010), DOI: 10.1142/S0219691310003341. Link, ISI, Google Scholar
M. Fatourechi , S. G. Mason and G. E. Birch , A wavelet-based approach for the extraction of event related potentials from EEG, Proc. ICASSP–04 (2004) pp. 737–740. Google Scholar- BCI Competition 2003; http://ida.first.fraunhofer.de/projects/bci/competition/ . Google Scholar
- IEEE Trans. Biomed. Eng. 51(6), 1044 (2004), DOI: 10.1109/TBME.2004.826692. Crossref, ISI, Google Scholar
- Internat. J. Mod. Phys. C 20(5), 781 (2009), DOI: 10.1142/S012918310901400X. Link, ISI, Google Scholar
- Nonlinear Anal. Real World Appl. 11, 592 (2010), DOI: 10.1016/j.nonrwa.2008.11.007. Crossref, ISI, Google Scholar
- Clin. Neurophysiol. 117, 628 (2006), DOI: 10.1016/j.clinph.2005.12.001. Crossref, ISI, Google Scholar
- Clin. Neurophysiol. 110, 1842 (1999), DOI: 10.1016/S1388-2457(99)00141-8. Crossref, ISI, Google Scholar
- Proc. Roy. Soc. Lond. A 443, 203 (1993). Crossref, ISI, Google Scholar
- Ann. Biomed. Eng. 26, 688 (1998). ISI, Google Scholar
- Inform. Sci. 178, 1629 (2008), DOI: 10.1016/j.ins.2007.11.012. Crossref, ISI, Google Scholar
-
R. Subba , An Introduction to Bispectral Analysis and Bilinear Time Series Models ( Springer-Verlag , New York , 1984 ) . Google Scholar - Signal Process. 53, 89 (1996), DOI: 10.1016/0165-1684(96)00099-0. Crossref, ISI, Google Scholar
- IEEE Trans. Acoust. Speech Signal Process. 33, 1213 (1985), DOI: 10.1109/TASSP.1985.1164679. Crossref, Google Scholar
- ASME J. Vib. Acoustics 116, 409 (1994), DOI: 10.1115/1.2930443. Crossref, ISI, Google Scholar
- Proc. R. Soc. Lond. A 444, 605 (1994). Crossref, ISI, Google Scholar
- IEEE Trans. Acoust. Speech Signal Process. 33, 1213 (1985), DOI: 10.1109/TASSP.1985.1164679. Crossref, Google Scholar
- Signal Process. 10, 35 (1986). ISI, Google Scholar
G. S. Hu , Digital Signal Processing (Tsinghua University Press, 2003) pp. 552–554. Google Scholar- Int. J. Wavelets Multiresolut. Inf. Process. 7(2), 199 (2009), DOI: 10.1142/S0219691309002878. Link, ISI, Google Scholar
- Ann. Eugen. 7, 179 (1936). Crossref, Google Scholar
- Int. J. Wavelets Multiresolut. Inf. Process. 7(3), 375 (2009), DOI: 10.1142/S0219691309002970. Link, ISI, Google Scholar
- J. Biomed. Sci. Eng. 1, 64 (2008), DOI: 10.4236/jbise.2008.11010. Crossref, ISI, Google Scholar


