World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
SPECIAL TOPIC SECTION: Knowledge Discovery Using Advanced Computational Intelligence ToolsNo Access

Decision Support Systems Using Ensemble Genetic Programming

    https://doi.org/10.1142/S0219649206001566Cited by:2 (Source: Crossref)

    This paper proposes a decision support system for tactical air combat environment using a combination of unsupervised learning for clustering the data and an ensemble of three well-known genetic programming techniques to classify the different decision regions accurately. The genetic programming techniques used are: Linear Genetic programming (LGP), Multi-Expression Programming (MEP) and Gene Expression Programming (GEP). The clustered data are used as the inputs to the genetic programming algorithms. Some simulation results demonstrating the difference of these techniques are also performed. Test results reveal that the proposed ensemble method performed better than the individual GP approaches and that the method is efficient.

    References

    • C. Tran, A. Abraham and L. Jain, Neurocomputing Journal 61C, 85 (2004), DOI: 10.1016/j.neucom.2004.03.006. Google Scholar
    • C. Tran, A. Abraham and L. Jain, Adaptive Database Learning in Decision Support System Using Evolutionary Fuzzy Systems: A Generic Framework, Hybrid Information Systems, Advances in Soft Computing (Physica-Verlag, Germany, 2001) pp. 237–252. Google Scholar
    • C. Tran, A. Abraham and L. Jain, TACDSS: adaptation using a hybrid neuro-fuzzy system, 7th Online World Conf. Soft Computing in Industrial Applications (WSC7), Advances in Soft Computing: Engineering Design and Manufacturing, eds. J. M. Benitezet al. (Springer-Verlag, Germany, 2002) pp. 53–62. Google Scholar
    • C. Tran, A. Abraham and L. Jain, Adaptation of mamdani fuzzy inference system using neuro-genetic approach for tactical air combat decision support system, 15th Australian Joint Conf. Artificial Intelligence (AI'02), LNAI 2557 (Springer-Verlag, Germany, 2002) pp. 672–679. Google Scholar
    • R. Cattral, F. Oppacher and D. Deogo, Rule acquisition with a genetic algorithm, Proc. Congress on Evolution Computation, CEC991 (1999) pp. 125–129. Google Scholar
    • S. B. Eom, Industrial Management and Data Systems 99(5), 213 (1999), DOI: 10.1108/02635579910253751. Crossref, Web of ScienceGoogle Scholar
    • T. Kohonen, Biological Cybernetics 43, 59 (1982), DOI: 10.1007/BF00337288. Crossref, Web of ScienceGoogle Scholar
    • P. A. Leal de Matos and P. L. Powell, Decision Support Systems 34(4), 397 (2003), DOI: 10.1016/S0167-9236(02)00066-0. Crossref, Web of ScienceGoogle Scholar
    • G. P. Moynihanet al., Decision Support Systems 33(1), 23 (2002), DOI: 10.1016/S0167-9236(01)00131-2. Crossref, Web of ScienceGoogle Scholar
    • H. R. Nematiet al., Decision Support Systems 33(2), 143 (2002), DOI: 10.1016/S0167-9236(01)00141-5. Crossref, Web of ScienceGoogle Scholar
    • K. N. Papamichail and S. French, Expert Systems with Applications 24(1), 35 (2003), DOI: 10.1016/S0957-4174(02)00081-7. Crossref, Web of ScienceGoogle Scholar
    • Parker, D. B. (1985). Learning-logic, Report TR-47. Cambridge, MA. Massachusetts Institute of Technology, Center for Computational Research in Economics and Management Science . Google Scholar
    • M. Oltean and C. Grosan, Evolving evolutionary algorithms using multi expression programming, Proc. 7th European Conference on Artificial Life (2003) pp. 651–658. Google Scholar
    • W.   Banzhaf et al. , Genetic Programming: An Introduction on the Automatic Evolution of Computer Programs and Its Applications ( Morgan Kaufmann Publishers, Inc. , USA , 1998 ) . CrossrefGoogle Scholar
    • C. Ferreira, Complex Systems 13(2), 87 (2001). Google Scholar
    • K. Debet al., IEEE Transaction on Evolutionary Computation 6(2), 181 (2002), DOI: 10.1109/4235.996017. Google Scholar
    • A. Abrahamet al., A concurrent neural network — genetic programming model for decision support systems, Knowledge Management Nurturing Culture, Innovation and Technology, 2005 International Conference on Knowledge Management (ICKM 2005), ed. S. Hawamdeh (World Scientific Press, Singapore, 2005) pp. 231–245. Google Scholar