SPECIFIC BINDING OF A SHORT miRNA SEQUENCE BY ZINC KNUCKLES OF Lin28: A MOLECULAR DYNAMICS SIMULATION STUDY
Abstract
Protein Lin28 recognizes pre-let-7 microRNAs (miRNAs) through direct interactions between its zinc-knuckle type zinc-finger (ZnF) domains and the terminal loop of pre-let-7, resulting in the inhibition of the synthesis of mature let-7 miRNAs. Despite the physiological importance, the involved conformational changes and energetic factors contributing to the binding affinity and specificity remain unclear. We conducted molecular dynamics (MD) simulations in conjunction with molecular mechanics/generalized born surface area (MM/GBSA) and energy decomposition calculations to investigate the RNA binding-induced conformational changes of the ZnFs and the residual level energetic factors that influence the binding affinity and specificity. We showed that the binding of the RNA results in the inter-domain conformational changes of the two ZnF domains, including changes of the spatial relationships of several nucleobase-binding amino acids. We also observed mutation-induced weakening of the affinity of the Lin28–pre-let-7 binding, which reveals the importance of the stacking interactions between the side-chains of Tyr140, His148, His162 and the bases of nucleic acid G2 and G5 in the specific recognition of pre-let-7 by the ZnFs of Lin28.
References
- Annu. Rev. Cell Dev. Biol. 23, 175 (2007), DOI: 10.1146/annurev.cellbio.23.090506.123406. Crossref, Web of Science, Google Scholar
- Cell 136, 215 (2009), DOI: 10.1016/j.cell.2009.01.002. Crossref, Web of Science, Google Scholar
- Nat. Rev. Genet. 11, 597 (2010). Crossref, Web of Science, Google Scholar
- Science 320, 97 (2008), DOI: 10.1126/science.1154040. Crossref, Web of Science, Google Scholar
- Cell 140, 445 (2010), DOI: 10.1016/j.cell.2010.02.007. Crossref, Web of Science, Google Scholar
- Trends. Mol. Med. 14, 400 (2008). Crossref, Web of Science, Google Scholar
- Cell 131, 1109 (2007), DOI: 10.1016/j.cell.2007.10.054. Crossref, Web of Science, Google Scholar
- RNA 14, 1539 (2008), DOI: 10.1261/rna.1155108. Crossref, Web of Science, Google Scholar
- Mol. Cell 32, 276 (2008), DOI: 10.1016/j.molcel.2008.09.014. Crossref, Web of Science, Google Scholar
- Nature. Cell Biol. 10, 987 (2008), DOI: 10.1038/ncb1759. Crossref, Web of Science, Google Scholar
- Nature. Struct. Biol. 16, 1016 (2009), DOI: 10.1038/nsmb.1675. Crossref, Google Scholar
- Nature. Struct. Biol. 16, 1021 (2009), DOI: 10.1038/nsmb.1676. Crossref, Google Scholar
- Cell 138, 696 (2009), DOI: 10.1016/j.cell.2009.08.002. Crossref, Web of Science, Google Scholar
- Nucleic. Acids. Res. 37, 4256 (2009), DOI: 10.1093/nar/gkp372. Crossref, Web of Science, Google Scholar
- Nucleic. Acids. Res. 38, 1240 (2010), DOI: 10.1093/nar/gkp1071. Crossref, Web of Science, Google Scholar
- Nature. Genet. 41, 843 (2009), DOI: 10.1038/ng.392. Crossref, Web of Science, Google Scholar
- Cell 147, 1080 (2011), DOI: 10.1016/j.cell.2011.10.020. Crossref, Web of Science, Google Scholar
- Nucleic. Acids. Res. 40, 1767 (2012), DOI: 10.1093/nar/gkr808. Crossref, Web of Science, Google Scholar
- Nature. Struct. Biol. 19, 84 (2012), DOI: 10.1038/nsmb.2202. Crossref, Google Scholar
- Nucleic. Acids. Res. 34, 4943 (2006), DOI: 10.1093/nar/gkl620. Crossref, Web of Science, Google Scholar
- Nucleic. Acids. Res. 36, 2705 (2008), DOI: 10.1093/nar/gkn102. Crossref, Web of Science, Google Scholar
- J. Theor. Comput. Chem. 11, 573 (2012), DOI: 10.1142/S021963361250037X. Link, Web of Science, Google Scholar
- Curr. Opin. Struct. Biol. 15, 367 (2005), DOI: 10.1016/j.sbi.2005.04.004. Crossref, Web of Science, Google Scholar
- Proteins 66, 903 (2007), DOI: 10.1002/prot.21211. Crossref, Web of Science, Google Scholar
- Bioinformatics 22, 2746 (2006), DOI: 10.1093/bioinformatics/btl470. Crossref, Web of Science, Google Scholar
- J. Mol. Biol. 409, 574 (2011), DOI: 10.1016/j.jmb.2011.04.007. Crossref, Web of Science, Google Scholar
- J. Theor. Comput. Chem. 11, 329 (2012), DOI: 10.1142/S021963361250023X. Link, Web of Science, Google Scholar
- AMBER 11, (2008). Google Scholar
- J. Theor. Comput. Chem. 11, 1201 (2012), DOI: 10.1142/S0219633612500800. Link, Web of Science, Google Scholar
- J. Comput. Chem. 24, 1999 (2003), DOI: 10.1002/jcc.10349. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 79, 926 (1983), DOI: 10.1063/1.445869. Crossref, Web of Science, Google Scholar
- J. Theor. Comput. Chem. 11, 1183 (2012), DOI: 10.1142/S0219633612500794. Link, Web of Science, Google Scholar
- J. Am. Chem. Soc. 130, 892 (2008), DOI: 10.1021/ja075302g. Crossref, Web of Science, Google Scholar
- J. Mol. Biol. 5, 196 (1999). Web of Science, Google Scholar
- J. Phys. Chem. B. 114, 7662 (2010), DOI: 10.1021/jp1017289. Crossref, Web of Science, Google Scholar
- Proteins 55, 383 (2004), DOI: 10.1002/prot.20033. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Chemistry New Titles |