World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Alpha Skew Gaussian Naïve Bayes Classifier

    The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.

    References

    • 1. A. Abdiansah and R. Wardoyo, Time complexity analysis of support vector machines (SVM) in LibSVM, International Journal of Computer Applications 128(3) (2015) 28–34. CrossrefGoogle Scholar
    • 2. S. Acitas, B. Senoglu and O. Arslan, Alpha-skew generalized t distribution, Rev. Colombiana de Estadística, 38(2) (2015) 353–370. Google Scholar
    • 3. L. Ali, S. U. Khan, N. A. Golilarz, I. Yakubu, I. Qasim, A. Noor and R. Nour, A feature-driven decision support system for heart failure prediction based on statistical model and Gaussian naive Bayes, Computational and Mathematical Methods in Medicine 4 (2019) 1–8. Crossref, ISIGoogle Scholar
    • 4. A. Ara and F. Louzada, The multivariate alpha skew Gaussian distribution, Bulletin of the Brazilian Mathematical Society, New Series 50(4) (2019) 823–843. CrossrefGoogle Scholar
    • 5. K. Bache and M. Lichman, UCI machine learning repository (2013). Google Scholar
    • 6. P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinformatics Review 16(5) (2000) 412–424. Crossref, ISIGoogle Scholar
    • 7. G. Casella and R. L. Berger, Statistical Inference, Vol. 2 (Duxbury Pacific Grove, CA, 2002). Google Scholar
    • 8. S. Chen, G. I. Webb, L. Liu and X. Ma, A novel selective naïve Bayes algorithm, Knowl.-Based Syst. 192 (2020) 105361. Crossref, ISIGoogle Scholar
    • 9. E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A. Weingessel and M. F. Leisch, Package ’e1071’. CRAN R Project (2015). Google Scholar
    • 10. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Vol. 3 (Wiley, New York, 1973). Google Scholar
    • 11. D. Elal-Olivero, Alpha-skew-normal distribution, Proyecciones J. Math. 29(3) (2010) 224–240. Google Scholar
    • 12. A. Fadlil, I. Riadi and S. Aji, A novel DDoS attack detection based on Gaussian naive Bayes, Bulletin of Electrical Engineering and Informatics 6(2) (2017) 140–148. CrossrefGoogle Scholar
    • 13. M. J. Flores, J. A. Gámez and A. M. Martínez, Domains of competence of the semi-naive Bayesian network classifiers, Information Sciences 260 (2014) 120–148. Crossref, ISIGoogle Scholar
    • 14. M. A. Gómez-Villegas, P. Main and R. Susi, The effect of block parameter perturbations in Gaussian bayesian networks: Sensitivity and robustness, Information Sciences 222 (2013) 439–458. Crossref, ISIGoogle Scholar
    • 15. W. Gui, P. Chen and H. Wu, A symmetric component alpha normal slash distribution: Properties and inferences, Journal of Statistical Theory and Applications 12(1) (2012) 55–66. CrossrefGoogle Scholar
    • 16. A. H. Handam, A note on generalized alpha-skew-normal distribution, International Journal of Pure and Applied Mathematics 74(4) (2012) 491–496. Google Scholar
    • 17. S. S. Harandi and M. H. Alamatsaz, Alpha-skew-laplace distribution, Statistics and Probability Letters 83 (2013) 774–782. Crossref, ISIGoogle Scholar
    • 18. S. S. Harandi and M. H. Alamatsaz, Discrete alpha-skew-laplace distribution, SORT: Statistics and Operations Research Transactions 39(1) (2015) 71–84. ISIGoogle Scholar
    • 19. W. Hyk, D. Świecicka and S. Garboś, Application of mixed (bimodal) distribution to human health risk assessment of Cu and Ni in drinking water collected by RDT sampling method from a large water supply zone, Microchemical Journal 110 (2013) 465–472. Crossref, ISIGoogle Scholar
    • 20. A. Karatzoglou, A. Smola, K. Hornik and M. A. Karatzoglou, Package ‘kernlab’. CRAN R Project (2016). Google Scholar
    • 21. T. Kautz, B. M. Eskofier and C. F. Pasluosta, Generic performance measure for multiclass-classifiers, Pattern Recognition 68 (2017) 111–125. Crossref, ISIGoogle Scholar
    • 22. G. Kou, Y. Lu, Y. Peng and Y. Shi, Evaluation of classification algorithms using MCDM and rank correlation, International Journal of Information Technology & Decision Making 11(1) (2012) 197–225. Link, ISIGoogle Scholar
    • 23. G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen and F. E. Alsaadi, Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Applied Soft Computing 86 (2020) 105836. Crossref, ISIGoogle Scholar
    • 24. S. Kruzick, O. Mengshoel and P. G. Menon, Detection of myocardial perfusion defects using first pass perfusion cardiac MRI data, in Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (Springer, 2014), pp. 248–254. CrossrefGoogle Scholar
    • 25. M. Kuhn, S. Weston, N. Coulter and R. Quinlan, C50: C5. 0 decision trees and rule-based models, CRAN R Project (2014). Google Scholar
    • 26. T. Li, G. Kou, Y. Peng and Y. Shi, Classifying with adaptive hyper-spheres: An incremental classifier based on competitive learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(4) (2017) 1218–1229. Crossref, ISIGoogle Scholar
    • 27. Y. Li and R. Anderson-Sprecher, Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier, Journal of Petroleum Science and Engineering 53(3) (2006) 149–157. Crossref, ISIGoogle Scholar
    • 28. M. Lichman, UCI machine learning repository (2013). Google Scholar
    • 29. W. Lou, X. Wang, F. Chen, Y. Chen, B. Jiang and H. Zhang, Sequence based prediction of dna-binding proteins based on hybrid feature selection using random forest and Gaussian naive Bayes, PloS one 9(1) (2014). Crossref, ISIGoogle Scholar
    • 30. F. Louzada, A. Ara and G. Fernandes, The bivariate alpha-skew-normal distribution, Communications in Statistics-Theory and Methods 46(14) (2017) 7147–7156. Crossref, ISIGoogle Scholar
    • 31. Y. M. Low, Extreme value analysis of bimodal Gaussian processes, Journal of Sound and Vibration 330(14) (2011) 3458–3472. Crossref, ISIGoogle Scholar
    • 32. T. Mitchell, Machine Learning (McGraw Hill, 1997). Google Scholar
    • 33. R. M. Moraes, J. A. Ferreira and L. S. Machado, A new Bayesian network based on Gaussian naive Bayes with fuzzy parameters for training assessment in virtual simulators, International Journal of Fuzzy Systems 23(3) (2021) 849–861. Crossref, ISIGoogle Scholar
    • 34. M. Ontivero-Ortega, A. Lage-Castellanos, G. Valente, R. Goebel and M. Valdes-Sosa, Fast Gaussian naïve Bayes for searchlight classification analysis, Neuroimage 163 (2017) 471–479. Crossref, ISIGoogle Scholar
    • 35. S. Parida, S. Dehuri and S. Cho, Application of genetic algorithms and Gaussian naïve bayesian approach in pipeline for cognitive state classification, in IEEE Int. Advance Computing Conference (IACC), (IEEE, 2014), pp. 1237–1242. CrossrefGoogle Scholar
    • 36. S. A. Pattekari and A. Parveen, Prediction system for heart disease using naïve Bayes, International Journal of Advanced Computer and Mathematical Sciences 3(3) (2012) 290–294. Google Scholar
    • 37. P. C. Pendharkar and R. Bhaskar, A hybrid bayesian network-based multi-agent system and a distributed systems architecture for the drug crime knowledge management, International Journal of Information Technology & Decision Making 2(4) (2003) 557–576. LinkGoogle Scholar
    • 38. A. Perez, P. Larranaga and I. Inza, Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes, International Journal of Approximate Reasoning 43(1) (2006) 1–25. Crossref, ISIGoogle Scholar
    • 39. D. M. W. Powers, Evaluation: From precision, recall and f-factor to roc, informedness, markedness & correlation, Journal of Machine Learning Technologies 2(1) (2011) 37–63. Google Scholar
    • 40. R. Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2015). Google Scholar
    • 41. R. Raizada and Y. Lee, Smoothness without smoothing: Why Gaussian naive Bayes is not naive for multi-subject searchlight studies, PloS one 8(7) (2013) e69566. Crossref, ISIGoogle Scholar
    • 42. B. Ripley, B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, D. Firth and M. B. Ripley, Package ‘mass’, CRAN R Project (2013). Google Scholar
    • 43. I. Rish, J. Hellerstein and J. Thathachar, An analysis of data characteristics that affect naive Bayes performance, Tech. Rep. RC21993, IBM TJ Watson Research Center 30 (2001). Google Scholar
    • 44. K. Schliep, K. Hechenbichler and M. K. Schliep, Package ‘kknn’, CRAN R Project (2016). Google Scholar
    • 45. S. Shafiei, M. Doostparast and A. Jamalizadeh, The alpha–beta skew normal distribution: Properties and applications, Statistics 50(2) (2016) 338–349. ISIGoogle Scholar
    • 46. M. Sharafi, Z. Sajjadnia and J. Behboodian, A new generalization of alpha-skew-normal distribution, Communications in Statistics-Theory and Methods 46(12) (2017) 6098–6111. Crossref, ISIGoogle Scholar
    • 47. W. Tian, H. Li and R. Huang, Extremal properties and tail asymptotic of alpha-skew-normal distribution, in Behavioral Predictive Modeling in Economics (Springer, 2021), pp. 219–233. CrossrefGoogle Scholar
    • 48. S. Wang, R. Gao and R. Gao, Bayesian network classifiers based on Gaussian kernel density, Expert Systems with Applications 51 (2016) 207–217. Crossref, ISIGoogle Scholar
    • 49. G. I. Webb, Naive Bayes, Encyclopedia of Machine Learning 15 (2010) 713–714. Google Scholar
    • 50. U. W. Wijayanto and R. Sarno, An experimental study of supervised sentiment analysis using Gaussian naïve Bayes, International Seminar on Application for Technology of Information and Communication (IEEE, 2018), pp. 476–481. CrossrefGoogle Scholar
    • 51. C. Xu and C. Torres-Verdín, Pore system characterization and petrophysical rock classification using a bimodal Gaussian density function, Mathematical Geosciences 45(6) (2013) 753–771. Crossref, ISIGoogle Scholar
    • 52. R. R. Yager, An extension of the naive Bayesian classifier, Information Sciences 176(5) (2006) 577–588. Crossref, ISIGoogle Scholar
    • 53. Y. Yang and G. I. Webb, Discretization for naive-bayes learning: Managing discretization bias and variance, Machine Learning 74(1) (2009) 39–74. Crossref, ISIGoogle Scholar