World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Semantically Enriched Variable Length Markov Chain Model for Analysis of User Web Navigation Sessions

    https://doi.org/10.1142/S0219622014500643Cited by:5 (Source: Crossref)

    The rapid growth of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills to find the required information and more sophisticated tools that are able to generate apt recommendations. Markov Chains have been widely used to generate next-page recommendations; however, accuracy of such models is limited. Herein, we propose the novel Semantic Variable Length Markov Chain Model (SVLMC) that combines the fields of Web Usage Mining and Semantic Web by enriching the Markov transition probability matrix with rich semantic information extracted from Web pages. We show that the method is able to enhance the prediction accuracy relatively to usage-based higher order Markov models and to semantic higher order Markov models based on ontology of concepts. In addition, the proposed model is able to handle the problem of ambiguous predictions. An extensive experimental evaluation was conducted on two real-world data sets and on one partially generated data set. The results show that the proposed model is able to achieve 15–20% better accuracy than the usage-based Markov model, 8–15% better than the semantic ontology Markov model and 7–12% better than semantic-pruned Selective Markov Model. In summary, the SVLMC is the first work proposing the integration of a rich set of detailed semantic information into higher order Web usage Markov models and experimental results reveal that the inclusion of detailed semantic data enhances the prediction ability of Markov models.

    References

    • B.   Liu , Web Data Mining , 2nd edn. ( Springer , 2011 ) . CrossrefGoogle Scholar
    • V. N. Padmanabhan and J. C. Mogul, ACM SIGCOMM Computer Communication Review 26(3), 22 (1996). CrossrefGoogle Scholar
    • J. Peiet al., IEEE Transactions on Knowledge Data Engineering 16(11), 424 (2004). Google Scholar
    • F. M. Facca and P. L. Lanzi, ACM Transactions on Data Knowledge Engineering 53(3), 225 (2005). Crossref, Web of ScienceGoogle Scholar
    • N. R. Mabroukeh and C. I. Ezeife, Using domain ontology for semantic Web usage mining and next page prediction, Proc. 18th ACM Conf. Information and Knowledge Management (CIKM 2009) (2009) pp. 1677–1680. Google Scholar
    • N. R. Mabroukeh and C. I. Ezeife, Semantic-rich Markov models for Web prefetching, IEEE Int. Conf. Data Mining Workshops (2009) pp. 465–470. Google Scholar
    • J. Borges and M. Levene, Generating dynamic higher-order Markov models in Web usage mining, Proc. Ninth European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD), eds. A. Jorgeet al. (2005) pp. 34–45. Google Scholar
    • J. Borges and M. Levene, IEEE Transactions on Knowledge and Data Engineering 19(4), 441 (2007). Crossref, Web of ScienceGoogle Scholar
    • Y. Peng and K. Gang, International Journal of Information Technology & Decision Making 7(4), 639 (2008). Link, Web of ScienceGoogle Scholar
    • S. Oh and J. Kim, International Journal of Information Technology & Decision Making 4(1), 81 (2005). Link, Web of ScienceGoogle Scholar
    • X. Huang, International Journal of Information Technology & Decision Making 6(1), 15 (2007). Link, Web of ScienceGoogle Scholar
    • S.   Park , N   Suresh and B.   Jeong , Data & Knowledge Engineering   65 , 512 ( 2008 ) . Crossref, Web of ScienceGoogle Scholar
    • C. Makriset al., A Web-page usage prediction scheme using weighted suffix trees, Proc. 14th Int. Conf. String Processing and Information Retrieval (2007) pp. 242–253. Google Scholar
    • M.   Jalali et al. , Expert Systems with Applications   37 , 6201 ( 2010 ) . Crossref, Web of ScienceGoogle Scholar
    • C. J. Carmonaet al., Expert Systems with Applications 39(12), 11243 (2012). Crossref, Web of ScienceGoogle Scholar
    • A.   Guerbas et al. , Knowledge-Based Systems   49 , 50 ( 2013 ) . Crossref, Web of ScienceGoogle Scholar
    • S. Jespersen, T. Pedersen and J. Thorhauge, Evaluating the Markov assumption for Web usage mining, Proc. Fifth ACM Int. Workshop Web Information and Data Management (2003) pp. 82–89. Google Scholar
    • R. R. Sarukkai, Computer Networks 33(6), 337 (2000). Crossref, Web of ScienceGoogle Scholar
    • M. Levene and G. Loizou, International Journal of Information Technology & Decision Making 2(3), 459 (2003). LinkGoogle Scholar
    • J. Borges and M. Levene, International Journal of Information Technology & Decision Making 9(4), 547 (2010). Link, Web of ScienceGoogle Scholar
    • W. K. Ching, E. S. Fung and M. K. Ng, Naval Research Logistics 51(4), 557 (2004). Crossref, Web of ScienceGoogle Scholar
    • R. Leonardi, P. Migliorati and M. Prandini, IEEE Transactions on Circuits and Systems for Video Technology 14(5), 634 (2004). Crossref, Web of ScienceGoogle Scholar
    • F. Khalil, J. Li and H. Wang, A framework for combining Markov model with association rules for predicting Web page accesses, Proc. Fifth Australasian Data Mining Conf. (AusDM2006)61 (2006) pp. 177–184. Google Scholar
    • S. Chimphleeet al., Rough sets clustering and Markov model for Web access prediction, Proc. Post Graduate Annual Seminar (2006) pp. 470–474. Google Scholar
    • M. Deshpande and G. Karypis, ACM Transactions on Internet Technology 4(4), 163 (2004). CrossrefGoogle Scholar
    • M. Eirinaki, M. Vazirgiannis and D. Kapogiannis, Web path recommendations based on page ranking and Markov models, Proc. Seventh ACM Int. Workshop Web Information and Data Management (WIDM '05) (2005) pp. 2–9. Google Scholar
    • M. Eirinakiet al., Introducing semantics in Web personalization: The role of ontologies, Proc. EWMF/KDO'2005 (2005) pp. 147–162. Google Scholar
    • Z. Zhang and O. Nasraoui, Efficient hybrid Web recommendations based on Markov clickstream models and implicit search, Proc. IEEE/WIC/ACM Int. Conf. Web Intelligence (2007) pp. 621–627. Google Scholar
    • H. Zhang, H. Song and X. Xu, Wuhan University Journal of Natural Sciences 12(5), 773 (2007). CrossrefGoogle Scholar
    • J. Hu and N. Zhong, International Journal of Information Technology & Decision Making 7(2), 291 (2008). Link, Web of ScienceGoogle Scholar
    • A. C. M. Fonget al., IEEE Transactions on Affective Computing 3(2), 152 (2011). Crossref, Web of ScienceGoogle Scholar
    • T. Nguyen, H. Y. Lu and J. Lu, Ontology-style Web usage model for semantic Web applications, Proc. 10th Int Conf. Intelligent Systems Design and Applications (ISDA) (2010) pp. 784–789. Google Scholar
    • P. Senkul and S. Salin, Knowledge and Information Systems 30(3), 1 (2011). Web of ScienceGoogle Scholar
    • M.   Spiliopoulou et al. , INFORMS Journal on Computing   15 , 171 ( 2003 ) . Crossref, Web of ScienceGoogle Scholar
    • R.   Cooley , B.   Mobasher and J.   Srivastava , Knowledge and Information System   1 , 5 ( 1999 ) . CrossrefGoogle Scholar
    • B. Berendtet al., Measuring the accuracy of sessionizers for Web usage analysis, Proc. Workshop on Web Mining at the First SIAM Int. Conf. Data Mining (2001) pp. 7–14. Google Scholar
    • J. Borges and M. Levene, Soft Computing 11(8), 717 (2006). Crossref, Web of ScienceGoogle Scholar
    • C. D.   Manning , P.   Raghavan and H.   Schütze , An Introduction to Information Retrieval ( Cambridge University Press , Cambridge, England , 2008 ) . CrossrefGoogle Scholar
    • D. J.   Rogers and T. T.   Tanimoto , Science   132 , 1115 ( 1960 ) . Crossref, Web of ScienceGoogle Scholar
    • B. Mobasheret al., Data Mining and Knowledge Discovery 6(1), 61 (2002). Crossref, Web of ScienceGoogle Scholar
    • J. Pitkow and P. Pirolli, Mining longest repeating subsequences to predict www surfing, Proc. 2nd USENIX Symp. Internet Technologies and Systems2 (1999) pp. 13–21. Google Scholar
    • P. I. Hofgesang and J. P. Patist, On modelling and synthetically generating Web usage data, Int Conf. Web Intelligence and Intelligent Agent Technology (2008) pp. 98–102. Google Scholar
    • T. R. Gruber, Knowledge Acquisition — Special issue: Current Issues in Knowledge Modeling 5(2), 199 (1993). CrossrefGoogle Scholar
    • P. Cimiano and J. Völker, Text2Onto: A framework for ontology learning and data-driven change discovery, NLDB'05 Proc. 10th Int. Conf. Natural Language Processing and Information Systems (2005) pp. 227–238. Google Scholar
    • H. Yao, A. M. Orme and L. Etzkorn, Journal of Computer Science 1(1), 107 (2005). CrossrefGoogle Scholar
    • H. Zhang, Y. Li and H. K. Tan, The Journal of Systems and Software 83(5), 803 (2010). Crossref, Web of ScienceGoogle Scholar