World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

TABU PROGRAMMING: A NEW PROBLEM SOLVER THROUGH ADAPTIVE MEMORY PROGRAMMING OVER TREE DATA STRUCTURES

    https://doi.org/10.1142/S0219622011004373Cited by:7 (Source: Crossref)

    Since the first appearance of the Genetic Programming (GP) algorithm, extensive theoretical and application studies on it have been conducted. Nowadays, the GP algorithm is considered one of the most important tools in Artificial Intelligence (AI). Nevertheless, several questions have been raised about the complexity of the GP algorithm and the disruption effect of the crossover and mutation operators. In this paper, the Tabu Programming (TP) algorithm is proposed to employ the search strategy of the classical Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits a set of local search procedures over a tree space in order to mitigate the drawbacks of the crossover and mutation operators. Extensive numerical experiments are performed to study the performance of the proposed algorithm for a set of benchmark problems. The results of those experiments show that the TP algorithm compares favorably to recent versions of the GP algorithm in terms of computational efforts and the rate of success. Finally, we present a comprehensive framework called Meta-Heuristics Programming (MHP) as general machine learning tools.

    References

    • J. R. Koza, Hierarchical genetic algorithms operating on populations of computer programs, Proceedings of the 11th International Joint Conference on Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1989) pp. 768–774. Google Scholar
    • J. R. Koza, Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems, Technical Report: CS-TR-90-1314, Stanford University, Stanford, USA (1990) . Google Scholar
    • A. Hedar and M. Fukushima, European Journal of Operational Research 170, 329 (2006). Crossref, ISIGoogle Scholar
    • A. Hedar, J. Wang and M. Fukushima, Soft Computing 12, 909 (2008). Crossref, ISIGoogle Scholar
    • M. S. Arumugam and M. V. C. Rao, International Journal of Information Technology & Decision Making 6(2), 315 (2007). Link, ISIGoogle Scholar
    • D. E.   Goldberg , The Design of Innovation: Lessons from and for Competent Genetic Algorithms ( Addison-Wesley , New York , 2002 ) . CrossrefGoogle Scholar
    • M. D.   Vose , The Simple Genetic Algorithm: Foundations and Theory ( MIT Press , Cambridge, MA , 1999 ) . CrossrefGoogle Scholar
    • E. C. Brown, C. T. Ragsdale and A. E. Carter, International Journal of Information Technology & Decision Making 6(2), 333 (2007). Link, ISIGoogle Scholar
    • D. E.   Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning ( Addison-Wesley , New York , 1989 ) . Google Scholar
    • Y. C. Hu and F. M. Tseng, International Journal of Information Technology & Decision Making 8(3), 473 (2009). Link, ISIGoogle Scholar
    • L. Nie, X. Xu and D. Zhan, International Journal of Information Technology & Decision Making 7(1), 183 (2008). Link, ISIGoogle Scholar
    • N. L. Cramer, A representation for the adaptive generation of simple sequential programs, Proceedings of International Conference on Genetic Algorithms and their Applications (Pittsburgh, USA, 1985) pp. 183–187. Google Scholar
    • J. R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , Cambridge, MA , 1992 ) . Google Scholar
    • J. R.   Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , Cambridge, MA , 1994 ) . Google Scholar
    • J. R.   Koza et al. , Genetic Programming III: Darwinian Invention and Problem Solving ( Morgan Kaufmann , San Francisco, CA , 1999 ) . Google Scholar
    • J. R.   Koza et al. , Genetic Programming IV: Routine Human-Competitive Machine Intelligence ( Kluwer Academic Publishers , Boston , 2003 ) . Google Scholar
    • W. B.   Langdon and R.   Polií , Foundations of Genetic Programming ( Springer-Verlag , 2002 ) . CrossrefGoogle Scholar
    • P. Nordin and W. Banzhaf, Complexity compression and evolution, Proceedings of 6th International Conference on Genetic Algorithms (Morgan Kaufmann, Pittsburgh, PA, USA, 1995) pp. 310–317. Google Scholar
    • P. Nordin, F. Francone and W. Banzhaf, Explicitly defined introns and destructive crossover in genetic programming, Proceedings of Workshop on Genetic Programming: From Theory to Real-World Applications (California, USA, 1995) pp. 6–22. Google Scholar
    • P. Kouchakpour, A. Zaknich and T. Bräunl, Knowledge Information Systems 21, 1 (2009). Crossref, ISIGoogle Scholar
    • M. D. Terrio and M. I. Heywood, Directing crossover for reduction of bloat in GP, Proceedings of Canadian Conference on Electrical and Computer Engineering (IEEE Press, 2002) pp. 1111–1115. Google Scholar
    • W.   Banzhaf et al. , Genetic Programming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications ( Morgan Kaufmann , San Francisco, CA , 1998 ) . Google Scholar
    • T. Castle and C. G. Johnson, Positional effect of crossover and mutation in grammatical evolution, Proceedings of 13th European Conference on Genetic Programming (Istanbul, Turkey, 2010) pp. 26–37. Google Scholar
    • T. H. Hoanget al., Genetic Programming: Theory and Practice III 9, eds. T. Yu, R. L. Riolo and B. Worzel (Springer-Verlag, 2006) pp. 159–175. CrossrefGoogle Scholar
    • C. G. Johnson, Genetic programming crossover: Does it cross over?, Proceedings of 12th European Conference on Genetic Programming (Springer, Berlin, 2009) pp. 97–108. Google Scholar
    • T. Blickle and L. Thiele, Genetic programming and redundancy, Proceedings of Genetic Algorithms within the Framework of Evolutionary Computation (Saarbrücken, Germany, 1994) pp. 33–38. Google Scholar
    • L. Zhang and A. K. Nandi, Transactions of the Institute of Measurement and Control 31(6), 533 (2009). Crossref, ISIGoogle Scholar
    • W. A. Tackett, Recombination, selection and the genetic construction of computer programs, PhD thesis, University of Southern California (1994) . Google Scholar
    • W. A. Tackett and A. Carmi, The unique implications of brood selection for genetic programming, Proceedings of 1st IEEE Conference on Evolutionary Computation (New York, NY, 1994) pp. 160–165. Google Scholar
    • T. Ito, H. Iba and S. Sato, Non-destructive depth-dependent crossover for genetic programming, Proceedings of 1st European Workshop on Genetic Programming (Springer, Heidelberg, 1998) pp. 71–82. Google Scholar
    • H. Majeed and C. Ryan, On the constructiveness of context-aware crossover, Proceedings of 9th Annual Conference on Genetic and Evolutionary Computation (London, England, 2007) pp. 1659–1666. Google Scholar
    • M. Keijzeret al., Ripple crossover in genetic programming, Proceedings of Genetic Programming (Springer-Verlag, Lake Como, Italy, 2001) pp. 74–86. Google Scholar
    • M. Kessler and T. Haynes, Depth-fair crossover in genetic programming, Proceedings of 1999 ACM Symposium on Applied Computing (San Antonio, Texas, 1999) pp. 319–323. Google Scholar
    • N. X. Hoai, R. I. McKay and D. Essam, IEEE Transactions on Evolutionary Computation 10(2), 157 (2006). Crossref, ISIGoogle Scholar
    • L. Lin and M. Gen, Soft Computing 13, 157 (2009). Crossref, ISIGoogle Scholar
    • F. Glover, Computers & Operations Research 13, 533 (1986). Crossref, ISIGoogle Scholar
    • F. Glover, E. Taillard and D. Werra, Annals of Operations Research 41, 3 (1993). Google Scholar
    • F.   Glover and M.   Laguna , Tabu Search ( Kluwer Academic Publishers , Boston, MA , 1997 ) . CrossrefGoogle Scholar
    • F.   Glover and G.   Kochenberger (eds.) , Handbook of MetaHeuristics ( Kluwer Academic Publishers , Boston, MA , 2002 ) . Google Scholar
    • F. Glover and G. Kochenberger, International Journal of Information Technology & Decision Making 5(4), 605 (2006). Link, ISIGoogle Scholar
    • F. Glover and R. Marti, Metaheuristic Procedures for Training Neutral Networks, eds. E. Alba and R. Marti (Springer-Verlag, Berlin, Germany, 2006) pp. 53–69. CrossrefGoogle Scholar
    • A. E.   Eiben and J. E.   Smith , Introduction to Evolutionary Computing ( Springer-Verlag , Berlin , 2003 ) . CrossrefGoogle Scholar
    • R.   Diestel , Graph Theory ( Springer-Verlag , Berlin , 2005 ) . Google Scholar
    • E. K. Burke, S. Gustafson and G. Kendall, IEEE Transactions on Evolutionary Computation 8(1), 47 (2004). Crossref, ISIGoogle Scholar
    • M. Boryczka and Z. J. Czech, Solving approximation problems by ant colony programming, Late Breaking Papers at Genetic and Evolutionary Computation Conference (New York, NY, 2002), pp. 39–46 . Google Scholar
    • M. Boryczka, Fundamenta Informaticae 68, 1 (2005). ISIGoogle Scholar
    • A.   Hedar and M.   Fukushima , Metaheuristics programming , Proceedings of 2nd International Workshop on Computational Intelligence & Applications ( Okayama, Japan , 2006 ) . Google Scholar
    • J. Balicki, International Journal of Computer Science and Network Security 7(10), 44 (2007). Google Scholar
    • C. Ferreira, Complex Systems 13, 87 (2001). Google Scholar
    • S. Silva, GPLAB: A genetic programming toolbox for MATLAB, http://gplab.sourceforge . Google Scholar
    • E. William and J. Northern, Genetic programming lab (GPLab) tool set version 3.0, Proceedings of IEEE Region 5 Technical, Professional, and Student Conference (Kansas City, Kansas, 2008) pp. 1–6. Google Scholar
    • R. Poli and W. B. Langdon, Artificial Intelligence 170, 953 (2006). Crossref, ISIGoogle Scholar
    • J. A. Walker and J. F. Miller, IEEE Transactions on Evolutionary Computation 12(4), 397 (2008). Crossref, ISIGoogle Scholar
    • R. M. A. Azad and C. Ryan, Genetic Programming: Theory and Practice III 9, eds. T. Yu, R. L. Riolo and B. Worzel (Springer-Verlag, 2006) pp. 141–158. CrossrefGoogle Scholar
    • M.   Dorigo and T.   Stützle , Ant Colony Optimization ( The MIT Press , 2004 ) . CrossrefGoogle Scholar
    • D. H. Wolpert and W. G. Macready, No free lunch theorems for search, Technical Report: SFI-TR-05-010, Santa Fe Institute, Sante Fe, NM (1995) . Google Scholar
    • D. H. Wolpert and W. G. Macready, IEEE Transactions on Evolutionary Computation 1(1), 67 (1997). CrossrefGoogle Scholar
    • E. Mabrouk, A. Hedar and M. Fukushima, Memetic programming with adaptive local search using tree data structures, Proceedings of 5th International Conference on Soft Computing as Transdisciplinary Science and Technology (Paris, France, 2008) pp. 258–264. Google Scholar
    • A.   Hedar and M.   Kamel , Scatter programming , Proceedings of 7th International Conference on Informatics and Systems ( Cairo, Egypt , 2010 ) . Google Scholar