TABU PROGRAMMING: A NEW PROBLEM SOLVER THROUGH ADAPTIVE MEMORY PROGRAMMING OVER TREE DATA STRUCTURES
Abstract
Since the first appearance of the Genetic Programming (GP) algorithm, extensive theoretical and application studies on it have been conducted. Nowadays, the GP algorithm is considered one of the most important tools in Artificial Intelligence (AI). Nevertheless, several questions have been raised about the complexity of the GP algorithm and the disruption effect of the crossover and mutation operators. In this paper, the Tabu Programming (TP) algorithm is proposed to employ the search strategy of the classical Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits a set of local search procedures over a tree space in order to mitigate the drawbacks of the crossover and mutation operators. Extensive numerical experiments are performed to study the performance of the proposed algorithm for a set of benchmark problems. The results of those experiments show that the TP algorithm compares favorably to recent versions of the GP algorithm in terms of computational efforts and the rate of success. Finally, we present a comprehensive framework called Meta-Heuristics Programming (MHP) as general machine learning tools.
References
J. R. Koza , Hierarchical genetic algorithms operating on populations of computer programs, Proceedings of the 11th International Joint Conference on Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1989) pp. 768–774. Google Scholar- J. R. Koza, Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems, Technical Report: CS-TR-90-1314, Stanford University, Stanford, USA (1990) . Google Scholar
- European Journal of Operational Research 170, 329 (2006). Crossref, Web of Science, Google Scholar
- Soft Computing 12, 909 (2008). Crossref, Web of Science, Google Scholar
- International Journal of Information Technology & Decision Making 6(2), 315 (2007). Link, Web of Science, Google Scholar
-
D. E. Goldberg , The Design of Innovation: Lessons from and for Competent Genetic Algorithms ( Addison-Wesley , New York , 2002 ) . Crossref, Google Scholar -
M. D. Vose , The Simple Genetic Algorithm: Foundations and Theory ( MIT Press , Cambridge, MA , 1999 ) . Crossref, Google Scholar - International Journal of Information Technology & Decision Making 6(2), 333 (2007). Link, Web of Science, Google Scholar
-
D. E. Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning ( Addison-Wesley , New York , 1989 ) . Google Scholar - International Journal of Information Technology & Decision Making 8(3), 473 (2009). Link, Web of Science, Google Scholar
- International Journal of Information Technology & Decision Making 7(1), 183 (2008). Link, Web of Science, Google Scholar
N. L. Cramer , A representation for the adaptive generation of simple sequential programs, Proceedings of International Conference on Genetic Algorithms and their Applications (Pittsburgh, USA, 1985) pp. 183–187. Google Scholar-
J. R. Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , Cambridge, MA , 1992 ) . Google Scholar -
J. R. Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , Cambridge, MA , 1994 ) . Google Scholar -
J. R. Koza , Genetic Programming III: Darwinian Invention and Problem Solving ( Morgan Kaufmann , San Francisco, CA , 1999 ) . Google Scholar -
J. R. Koza , Genetic Programming IV: Routine Human-Competitive Machine Intelligence ( Kluwer Academic Publishers , Boston , 2003 ) . Google Scholar -
W. B. Langdon and R. Polií , Foundations of Genetic Programming ( Springer-Verlag , 2002 ) . Crossref, Google Scholar P. Nordin and W. Banzhaf , Complexity compression and evolution, Proceedings of 6th International Conference on Genetic Algorithms (Morgan Kaufmann, Pittsburgh, PA, USA, 1995) pp. 310–317. Google ScholarP. Nordin , F. Francone and W. Banzhaf , Explicitly defined introns and destructive crossover in genetic programming, Proceedings of Workshop on Genetic Programming: From Theory to Real-World Applications (California, USA, 1995) pp. 6–22. Google Scholar- Knowledge Information Systems 21, 1 (2009). Crossref, Web of Science, Google Scholar
M. D. Terrio and M. I. Heywood , Directing crossover for reduction of bloat in GP, Proceedings of Canadian Conference on Electrical and Computer Engineering (IEEE Press, 2002) pp. 1111–1115. Google Scholar-
W. Banzhaf , Genetic Programming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications ( Morgan Kaufmann , San Francisco, CA , 1998 ) . Google Scholar T. Castle and C. G. Johnson , Positional effect of crossover and mutation in grammatical evolution, Proceedings of 13th European Conference on Genetic Programming (Istanbul, Turkey, 2010) pp. 26–37. Google Scholar- Genetic Programming: Theory and Practice III 9, eds.
T. Yu , R. L. Riolo and B. Worzel (Springer-Verlag, 2006) pp. 159–175. Crossref, Google Scholar , C. G. Johnson , Genetic programming crossover: Does it cross over?, Proceedings of 12th European Conference on Genetic Programming (Springer, Berlin, 2009) pp. 97–108. Google ScholarT. Blickle and L. Thiele , Genetic programming and redundancy, Proceedings of Genetic Algorithms within the Framework of Evolutionary Computation (Saarbrücken, Germany, 1994) pp. 33–38. Google Scholar- Transactions of the Institute of Measurement and Control 31(6), 533 (2009). Crossref, Web of Science, Google Scholar
- W. A. Tackett, Recombination, selection and the genetic construction of computer programs, PhD thesis, University of Southern California (1994) . Google Scholar
W. A. Tackett and A. Carmi , The unique implications of brood selection for genetic programming, Proceedings of 1st IEEE Conference on Evolutionary Computation (New York, NY, 1994) pp. 160–165. Google ScholarT. Ito , H. Iba and S. Sato , Non-destructive depth-dependent crossover for genetic programming, Proceedings of 1st European Workshop on Genetic Programming (Springer, Heidelberg, 1998) pp. 71–82. Google ScholarH. Majeed and C. Ryan , On the constructiveness of context-aware crossover, Proceedings of 9th Annual Conference on Genetic and Evolutionary Computation (London, England, 2007) pp. 1659–1666. Google ScholarM. Keijzer , Ripple crossover in genetic programming, Proceedings of Genetic Programming (Springer-Verlag, Lake Como, Italy, 2001) pp. 74–86. Google ScholarM. Kessler and T. Haynes , Depth-fair crossover in genetic programming, Proceedings of 1999 ACM Symposium on Applied Computing (San Antonio, Texas, 1999) pp. 319–323. Google Scholar- IEEE Transactions on Evolutionary Computation 10(2), 157 (2006). Crossref, Web of Science, Google Scholar
- Soft Computing 13, 157 (2009). Crossref, Web of Science, Google Scholar
- Computers & Operations Research 13, 533 (1986). Crossref, Web of Science, Google Scholar
- Annals of Operations Research 41, 3 (1993). Google Scholar
-
F. Glover and M. Laguna , Tabu Search ( Kluwer Academic Publishers , Boston, MA , 1997 ) . Crossref, Google Scholar -
F. Glover and G. Kochenberger (eds.) , Handbook of MetaHeuristics ( Kluwer Academic Publishers , Boston, MA , 2002 ) . Google Scholar - International Journal of Information Technology & Decision Making 5(4), 605 (2006). Link, Web of Science, Google Scholar
- Metaheuristic Procedures for Training Neutral Networks, eds.
E. Alba and R. Marti (Springer-Verlag, Berlin, Germany, 2006) pp. 53–69. Crossref, Google Scholar , -
A. E. Eiben and J. E. Smith , Introduction to Evolutionary Computing ( Springer-Verlag , Berlin , 2003 ) . Crossref, Google Scholar -
R. Diestel , Graph Theory ( Springer-Verlag , Berlin , 2005 ) . Google Scholar - IEEE Transactions on Evolutionary Computation 8(1), 47 (2004). Crossref, Web of Science, Google Scholar
- M. Boryczka and Z. J. Czech, Solving approximation problems by ant colony programming, Late Breaking Papers at Genetic and Evolutionary Computation Conference (New York, NY, 2002), pp. 39–46 . Google Scholar
- Fundamenta Informaticae 68, 1 (2005). Web of Science, Google Scholar
-
A. Hedar and M. Fukushima , Metaheuristics programming , Proceedings of 2nd International Workshop on Computational Intelligence & Applications ( Okayama, Japan , 2006 ) . Google Scholar - International Journal of Computer Science and Network Security 7(10), 44 (2007). Google Scholar
- Complex Systems 13, 87 (2001). Google Scholar
- S. Silva, GPLAB: A genetic programming toolbox for MATLAB, http://gplab.sourceforge . Google Scholar
E. William and J. Northern , Genetic programming lab (GPLab) tool set version 3.0, Proceedings of IEEE Region 5 Technical, Professional, and Student Conference (Kansas City, Kansas, 2008) pp. 1–6. Google Scholar- Artificial Intelligence 170, 953 (2006). Crossref, Web of Science, Google Scholar
- IEEE Transactions on Evolutionary Computation 12(4), 397 (2008). Crossref, Web of Science, Google Scholar
- Genetic Programming: Theory and Practice III 9, eds.
T. Yu , R. L. Riolo and B. Worzel (Springer-Verlag, 2006) pp. 141–158. Crossref, Google Scholar , -
M. Dorigo and T. Stützle , Ant Colony Optimization ( The MIT Press , 2004 ) . Crossref, Google Scholar - D. H. Wolpert and W. G. Macready, No free lunch theorems for search, Technical Report: SFI-TR-05-010, Santa Fe Institute, Sante Fe, NM (1995) . Google Scholar
- IEEE Transactions on Evolutionary Computation 1(1), 67 (1997). Crossref, Google Scholar
E. Mabrouk , A. Hedar and M. Fukushima , Memetic programming with adaptive local search using tree data structures, Proceedings of 5th International Conference on Soft Computing as Transdisciplinary Science and Technology (Paris, France, 2008) pp. 258–264. Google Scholar-
A. Hedar and M. Kamel , Scatter programming , Proceedings of 7th International Conference on Informatics and Systems ( Cairo, Egypt , 2010 ) . Google Scholar