World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the global operator and Fueter mapping theorem for slice polyanalytic functions

    In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.

    AMSC: 30G35, 32A25, 30E20

    References

    • 1. L. D. Abreu , Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmonic Anal. 29 (2010) 287–302. Crossref, ISIGoogle Scholar
    • 2. L. D. Abreu and H. G. Feichtinger , Function spaces of polyanalytic functions, in Harmonic and Complex Analysis and its Applications, ed. Vasil’ev A, Trends in Mathematics (Birkhäuser, 2014). CrossrefGoogle Scholar
    • 3. D. Alpay, F. Colombo and I. Sabadini , Slice Hyperholomorphic Schur Analysis, Operator Theory Advances and Applications, Vol. 256 (Birkhäuser, Basel, 2016). CrossrefGoogle Scholar
    • 4. D. Alpay, K. Diki and I. Sabadini , On slice polyanalytic functions of a quaternionic variable, Results Math. 74 (2019) 17. Crossref, ISIGoogle Scholar
    • 5. N. Askour, A. Intissar and Z. Mouayn , Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants, C. R. Acad. Sci. Paris Sr. I Math. 325 (1997) 707–712. Crossref, ISIGoogle Scholar
    • 6. M. Balk , Polyanalytic Functions (Akademie-Verlag, Berlin, 1991). Google Scholar
    • 7. H. Begehr , Iterated integral operators in Clifford analysis, J. Anal. Appl. 18 (1999) 361–377. Google Scholar
    • 8. F. Brackx , On (k)-monogenic functions of a quaternion variable, Function Theoretic Methods in Differential Equations, Research Notes in Mathematics, Vol. 8 (Pitman, London, 1976), pp. 22–44. CrossrefGoogle Scholar
    • 9. F. Brackx and R. Delanghe , Hypercomplex function theory and Hilbert modules with reproducing Kernel, Proc. London Math. Soc. s3-37 (1978) 545–576. Crossref, ISIGoogle Scholar
    • 10. P. Cerejeiras and U. Kähler , Monogenic Signal Theory, in Operator Theory, ed. D. Alpay (Springer, Basel, 2015), pp. 1701–1724. CrossrefGoogle Scholar
    • 11. F. Colombo and J. Gantner , Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes, Operator Theory: Advances and Applications, Vol. 274 (Birkhäuser/Springer, Cham, 2019). CrossrefGoogle Scholar
    • 12. F. Colombo, J. Gantner and D. P. Kimsey , Spectral Theory on the S-Spectrum for Quaternionic Operators, Operator Theory: Advances and Applications, Vol. 270 (Birkhäuser/Springer, Cham, 2018). CrossrefGoogle Scholar
    • 13. F. Colombo, J. O. Gonzalez-Cervantes and I. Sabadini , On slice biregular functions and isomorphisms of Bergman spaces, Complex Var. Elliptic Equ. 57(7–8) (2012) 825–839. Crossref, ISIGoogle Scholar
    • 14. F. Colombo, J. O. Gonzalez-Cervantes and I. Sabadini , A nonconstant coefficients differential operator associated to slice monogenic functions, Trans. Am. Math. Soc. 365 (2013) 303–318. Crossref, ISIGoogle Scholar
    • 15. F. Colombo and I. Sabadini , A structure formula for slice monogenic functions and some of its consequences, in Hypercomplex Analysis, eds. M. Shapiroet al., Trends in Mathematics (Birkhäuser, Basel, 2009), pp. 101–114. Google Scholar
    • 16. F. Colombo, I. Sabadini and F. Sommen , The Fueter mapping theorem in integral form and the F-functional calculus, Math. Methods Appl. Sci. 33 (2010) 2050–2066. Crossref, ISIGoogle Scholar
    • 17. F. Colombo, I. Sabadini, F. Sommen and D. Struppa , Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, Vol. 39 (Birkhäuser, Basel, 2004). CrossrefGoogle Scholar
    • 18. F. Colombo, I. Sabadini and D. C. Struppa , Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, Vol. 289 (Birkhäuser/Springer Basel AG, Basel, 2011). CrossrefGoogle Scholar
    • 19. F. Colombo, I. Sabadini and D. C. Struppa , Entire Slice Regular Functions, SpringerBriefs in Mathematics, (Springer, 2016). CrossrefGoogle Scholar
    • 20. F. Colombo and F. Sommen , Distributions and the global operator of slice monogenic functions, Complex Anal. Oper. Theory 8 (2014) 1257–1268. Crossref, ISIGoogle Scholar
    • 21. K. Diki, R. S. Krausshar and I. Sabadini , On the Bargmann–Fock–Fueter and Bergman–Fueter integral transforms, J. Math. Phys. 60 (2019) 083506. Crossref, ISIGoogle Scholar
    • 22. G. Gentili, C. Stoppato and D. C. Struppa , Regular Functions of a Quaternionic Variable, Springer Monographs in Mathematics (Springer, Berlin-Heidelberg, 2013). CrossrefGoogle Scholar
    • 23. G. Gentili and D. C. Struppa , A new approach to Cullen-regular functions of a quaternionic variable, C.R. Acad. Sci. Paris 342 (2006) 741–744. Crossref, ISIGoogle Scholar
    • 24. G. Gentili and D. C. Struppa , A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007) 279–301. Crossref, ISIGoogle Scholar
    • 25. R. Ghiloni and A. Perotti , Global differential equations for slice regular functions, Math. Nach. 287 (2014) 561–573. Crossref, ISIGoogle Scholar
    • 26. K. Gürlebeck, K. Habetha and W. Sprössig , Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008). Google Scholar
    • 27. U. Kähler, M. Ku and T. Qian , Schwarz problems for poly-Hardy space on the unit ball, Results Math. 71 (2017) 801–823. Crossref, ISIGoogle Scholar
    • 28. D. Pena Pena, I. Sabadini and F. Sommen , Segal–Bargmann–Fock modules of monogenic functions, J. Math. Phys. 58 (2017) 103507. Crossref, ISIGoogle Scholar
    • 29. T. Qian , Fueter mapping theorem in hypercomplex analysis, Operator Theory, ed. D. Alpay (Springer, Basel, 2015), pp. 1491–1507. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Differential Equations and Mathematical Analysis books in our Mathematics 2021 catalogue
    Featuring authors such as Ronen Peretz, Antonio Martínez-Abejón & Martin Schechter