On the global operator and Fueter mapping theorem for slice polyanalytic functions
Abstract
In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.
References
- 1. , Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmonic Anal. 29 (2010) 287–302. Crossref, ISI, Google Scholar
- 2. ,
Function spaces of polyanalytic functions , in Harmonic and Complex Analysis and its Applications, ed. Vasil’ev A,Trends in Mathematics (Birkhäuser, 2014). Crossref, Google Scholar - 3. , Slice Hyperholomorphic Schur Analysis,
Operator Theory Advances and Applications , Vol. 256 (Birkhäuser, Basel, 2016). Crossref, Google Scholar - 4. , On slice polyanalytic functions of a quaternionic variable, Results Math. 74 (2019) 17. Crossref, ISI, Google Scholar
- 5. , Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants, C. R. Acad. Sci. Paris Sr. I Math. 325 (1997) 707–712. Crossref, ISI, Google Scholar
- 6. , Polyanalytic Functions (Akademie-Verlag, Berlin, 1991). Google Scholar
- 7. , Iterated integral operators in Clifford analysis, J. Anal. Appl. 18 (1999) 361–377. Google Scholar
- 8. ,
On (k)-monogenic functions of a quaternion variable , Function Theoretic Methods in Differential Equations,Research Notes in Mathematics , Vol. 8 (Pitman, London, 1976), pp. 22–44. Crossref, Google Scholar - 9. , Hypercomplex function theory and Hilbert modules with reproducing Kernel, Proc. London Math. Soc. s3-37 (1978) 545–576. Crossref, ISI, Google Scholar
- 10. ,
Monogenic Signal Theory , in Operator Theory, ed. D. Alpay (Springer, Basel, 2015), pp. 1701–1724. Crossref, Google Scholar - 11. , Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes,
Operator Theory: Advances and Applications , Vol. 274 (Birkhäuser/Springer, Cham, 2019). Crossref, Google Scholar - 12. , Spectral Theory on the S-Spectrum for Quaternionic Operators,
Operator Theory: Advances and Applications , Vol. 270 (Birkhäuser/Springer, Cham, 2018). Crossref, Google Scholar - 13. , On slice biregular functions and isomorphisms of Bergman spaces, Complex Var. Elliptic Equ. 57(7–8) (2012) 825–839. Crossref, ISI, Google Scholar
- 14. , A nonconstant coefficients differential operator associated to slice monogenic functions, Trans. Am. Math. Soc. 365 (2013) 303–318. Crossref, ISI, Google Scholar
- 15. ,
A structure formula for slice monogenic functions and some of its consequences , in Hypercomplex Analysis, eds. M. Shapiro,Trends in Mathematics (Birkhäuser, Basel, 2009), pp. 101–114. Google Scholar - 16. , The Fueter mapping theorem in integral form and the F-functional calculus, Math. Methods Appl. Sci. 33 (2010) 2050–2066. Crossref, ISI, Google Scholar
- 17. , Analysis of Dirac Systems and Computational Algebra,
Progress in Mathematical Physics , Vol. 39 (Birkhäuser, Basel, 2004). Crossref, Google Scholar - 18. , Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,
Progress in Mathematics , Vol. 289 (Birkhäuser/Springer Basel AG, Basel, 2011). Crossref, Google Scholar - 19. , Entire Slice Regular Functions,
SpringerBriefs in Mathematics , (Springer, 2016). Crossref, Google Scholar - 20. , Distributions and the global operator of slice monogenic functions, Complex Anal. Oper. Theory 8 (2014) 1257–1268. Crossref, ISI, Google Scholar
- 21. , On the Bargmann–Fock–Fueter and Bergman–Fueter integral transforms, J. Math. Phys. 60 (2019) 083506. Crossref, ISI, Google Scholar
- 22. , Regular Functions of a Quaternionic Variable,
Springer Monographs in Mathematics (Springer, Berlin-Heidelberg, 2013). Crossref, Google Scholar - 23. , A new approach to Cullen-regular functions of a quaternionic variable, C.R. Acad. Sci. Paris 342 (2006) 741–744. Crossref, ISI, Google Scholar
- 24. , A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007) 279–301. Crossref, ISI, Google Scholar
- 25. , Global differential equations for slice regular functions, Math. Nach. 287 (2014) 561–573. Crossref, ISI, Google Scholar
- 26. , Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008). Google Scholar
- 27. , Schwarz problems for poly-Hardy space on the unit ball, Results Math. 71 (2017) 801–823. Crossref, ISI, Google Scholar
- 28. , Segal–Bargmann–Fock modules of monogenic functions, J. Math. Phys. 58 (2017) 103507. Crossref, ISI, Google Scholar
- 29. ,
Fueter mapping theorem in hypercomplex analysis , Operator Theory, ed. D. Alpay (Springer, Basel, 2015), pp. 1491–1507. Crossref, Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Check out our Differential Equations and Mathematical Analysis books in our Mathematics 2021 catalogue |


