World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Generalized support vector regression: Duality and tensor-kernel representation

    https://doi.org/10.1142/S0219530519410069Cited by:2 (Source: Crossref)
    This article is part of the issue:

    In this paper, we study the variational problem associated to support vector regression in Banach function spaces. Using the Fenchel–Rockafellar duality theory, we give an explicit formulation of the dual problem as well as of the related optimality conditions. Moreover, we provide a new computational framework for solving the problem which relies on a tensor-kernel representation. This analysis overcomes the typical difficulties connected to learning in Banach spaces. We finally present a large class of tensor-kernels to which our theory fully applies: power series tensor kernels. This type of kernels describes Banach spaces of analytic functions and includes generalizations of the exponential and polynomial kernels as well as, in the complex case, generalizations of the Szegö and Bergman kernels.

    References

    • 1. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (Springer, New York, 2011). Google Scholar
    • 2. V. I. Bogachev, Measure Theory (Springer, Berlin, 2007). Google Scholar
    • 3. M. Bóna, A Walk Through Combinatorics, 3rd edn. (World Scientific, Singapore, 2011). LinkGoogle Scholar
    • 4. A. Christmann and D. X. Zhou, Learning rates for the risk of kernel-based quantile regression estimators in additive models, Anal. Appl. 14 (2016) 449–477. Link, Web of ScienceGoogle Scholar
    • 5. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (Kluwer, Dordrecht, 1990). Google Scholar
    • 6. P. L. Combettes, S. Salzo and S. Villa, Consistency of regularized learning schemes in Banach spaces, Anal. Appl. 16 (2018) 1–54. Link, Web of ScienceGoogle Scholar
    • 7. P. L. Combettes, S. Salzo and S. Villa, Consistent learning by composite proximal thresholding, Math. Program. Ser. B 167 (2018) 99–127. Web of ScienceGoogle Scholar
    • 8. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines (Cambridge University Press, Cambridge, 2000). Google Scholar
    • 9. C. De Mol, E. De Vito and L. Rosasco, Elastic-net regularization in learning theory, J. Complex. 25 (2009) 201–230. Web of ScienceGoogle Scholar
    • 10. R. Der and D. Lee, Large-margin classification in Banach spaces, in Proc. 11th Int. Conf. Artificial Intelligence and Statistics, Vol. 2, eds. M. Meila and X. Shen (PMLR, 2007), pp. 91–98. Google Scholar
    • 11. E. De Vito, L. Rosasco, A. Caponnetto, M. Piana and A. Verri, Some properties of regularized kernel methods, J. Mach. Learn. Res. 5 (2004) 1363–1390. Web of ScienceGoogle Scholar
    • 12. G. E. Fasshauer, F. J. Hickernell and Q. Ye, Solving support vector machines in reproducing kernel Banach spaces with positive definite functions, Appl. Comput. Harmon. Anal. 38 (2015) 115–139. Web of ScienceGoogle Scholar
    • 13. Y. Feng, S. Lv, H. Hang and J. A. K. Suykens, Kernelized elastic net regularization: Generalization bounds and sparse recovery, Neural Comput. 28 (2016) 525–562. Web of ScienceGoogle Scholar
    • 14. W. Fu, Penalized regressions: The bridge versus the lasso, J. Comput. Graph. Stat. 7 (1998) 397–416. Crossref, Web of ScienceGoogle Scholar
    • 15. F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Comput. 10 (1998) 1455–1480. Web of ScienceGoogle Scholar
    • 16. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II (Springer, Berlin, 1996). Google Scholar
    • 17. T. Hofmann, B. Schölkopf and A. J. Smola, Kernel methods in machine learning, Ann. Statist. 36 (2008) 1171–1220. Web of ScienceGoogle Scholar
    • 18. V. Koltchinskii, Sparsity in penalized empirical risk minimization, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 7–57. Web of ScienceGoogle Scholar
    • 19. B. S. Mendelson and J. Neeman, Regularization in kernel learning, Ann. Statist. 38 (2010) 526–565. Web of ScienceGoogle Scholar
    • 20. C. A. Micchelli, M. Pontil and D. X. Zhou, Error bounds for learning the kernel, Anal. Appl. 14 (2016) 849–868. Link, Web of ScienceGoogle Scholar
    • 21. V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces (Cambridge University Press, Cambridge, 2016). Google Scholar
    • 22. R. T. Rockafellar, Conjugate Duality and Optimization (SIAM, Philadelphia, PA, 1974). Google Scholar
    • 23. S. Salzo, The variable metric forward-backward splitting algorithm under mild differentiability assumptions, SIAM J. Optim. 27 (2017) 2153–2181. Web of ScienceGoogle Scholar
    • 24. S. Salzo, L. Rosasco and J. A. K. Suykens, Solving p-norm regularization with tensor kernels, in Proc. 21st Int. Conf. Artificial Intelligence and Statistics, Vol. 84, eds. A. Storkey and F. Perez-Cruz (PMLR, 2018), pp. 1655–1663. Google Scholar
    • 25. B. Schölkopf, R. Herbrich and A. J. Smola, A generalized representer theorem, in Computational Learning Theory: 14th Annual Conf. Computational Learning Theory, COLT 2001 (Springer, Berlin, 2001). Google Scholar
    • 26. B. K. Sriperumbudur, K. Fukumizu and G. R. G. Lanckriet, Learning in Hilbert vs. Banach spaces: A measure embedding viewpoint, in Advances in Neural Information Processing Systems, Vol. 24 (Curran Associates, 2011). Google Scholar
    • 27. I. Steinwart and A. Christmann, Support Vector Machines (Springer, New York, 2008). Google Scholar
    • 28. I. Steinwart and A. Christmann, Sparsity of SVMs that use the 𝜀-insensitive loss, in Advances in Neural Information Processing Systems, Vol. 21 (Curran Associates, 2009). Google Scholar
    • 29. H. Sun and Q. Wu, Indefinite kernel network with dependent sampling, Anal. Appl. 11 (2013) 1350020. Link, Web of ScienceGoogle Scholar
    • 30. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines (World Scientific, Singapore, 2002). LinkGoogle Scholar
    • 31. V. N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998). Google Scholar
    • 32. Y. Xu and Q. Ye, Generalized Mercer kernels and reproducing kernel Banach spaces, Mem. Amer. Math. Soc. 258 (2019) vi+122. Web of ScienceGoogle Scholar
    • 33. R. M. Young, An Introduction to Nonharmonic Fourier Series (Academic Press, San Diego, 2001). Google Scholar
    • 34. C. Zălinescu, Convex Analysis in General Vector Spaces (World Scientific, River Edge, NJ, 2002). LinkGoogle Scholar
    • 35. H. Zhang, Y. Xu and J. Zhang, Reproducing kernel Banach spaces for machine learning, J. Mach. Learn. Res. 10 (2009) 2741–2775. Web of ScienceGoogle Scholar
    • 36. H. Zhang and J. Zhang, Regularized learning in Banach spaces as an optimization problem: Representer theorems, J. Global Optim. 54 (2012) 235–250. Web of ScienceGoogle Scholar
    • 37. B. Zwicknagl, Power series kernels, Constr. Approx. 29 (2009) 61–84. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Differential Equations and Mathematical Analysis books in our Mathematics 2021 catalogue
    Featuring authors such as Ronen Peretz, Antonio Martínez-Abejón & Martin Schechter