Besov regularity of parabolic and hyperbolic PDEs
Abstract
This paper is concerned with the regularity of solutions to linear and nonlinear evolution equations on nonsmooth domains. In particular, we study the smoothness in the specific scale of Besov spaces. The regularity in these spaces determines the approximation order that can be achieved by adaptive and other nonlinear approximation schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms.
References
- 1. , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959) 623–727. Crossref, ISI, Google Scholar
- 2. , Parabolic Besov regularity for the heat equation, Constr. Approx. 36 (2012) 145–159. Crossref, Google Scholar
- 3. , Parabolic mean values and maximal estimates for gradients of temperatures, J. Funct. Anal. 255 (2008) 1939–1956. Crossref, Google Scholar
- 4. , On Besov regularity of temperatures, J. Fourier Anal. Appl. 16 (2010) 1007–1020. Crossref, Google Scholar
- 5. , An Introduction to Semilinear Evolution Equations,
Oxford Lecture Series in Mathematics and Its Applications (Clarendon Press, 1998). Google Scholar - 6. P. Cioica, Besov regularity of stochastic partial differential equations on bounded Lipschitz domains, Ph.D. thesis, Philipps-Universität Marburg (2013). Google Scholar
- 7. , On the -regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains, Electron. J. Probab. 18(82) (2013) 1–41. Google Scholar
- 8. , Adaptive wavelet methods for elliptic operator equation: Convergence rates, Math. Comp. 70 (2001) 27–75. Crossref, ISI, Google Scholar
- 9. , Besov regularity for elliptic boundary value problems with variable coefficients, Manuscripta Math. 95 (1998) 59–77. Crossref, Google Scholar
- 10. , Besov regularity for interface problems, Z. Angew. Math. Mech. 79(6) (1999) 383–388. Crossref, Google Scholar
- 11. , Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett. 12(6) (1999) 31–38. Crossref, Google Scholar
- 12. , Besov regularity of edge singularities for the Poisson equation in polyhedral domains, Numer. Linear Algebra Appl. 9(6–7) (2002) 457–466. Crossref, Google Scholar
- 13. ,
Nonlinear approximation and adaptive techniques for solving elliptic operator equations , in Multiscale Wavelet Methods for Partial Differential Equations, eds. W. DahmenA. J. KurdilaP. Oswald,Wavelet Analysis and Applications , Vol. 6 (Academic Press, San Diego, 1997), pp. 237–283. Crossref, Google Scholar - 14. (1997). Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22(1–2) (1997) 1–16. Crossref, Google Scholar
- 15. , Besov regularity of solutions to the -Poisson equation, Nonlinear Anal. 130 (2016) 298–329. Crossref, Google Scholar
- 16. S. Dahlke, M. Hansen, C. Schneider and W. Sickel, Properties of Kondratiev spaces, preprint, Reihe Philipps University Marburg, Bericht Mathematik No. 2018-06 (2018). Google Scholar
- 17. , Describing the singular behaviour of parabolic equations on cones in fractional Sobolev spaces, Int. J. Geomath. 9(2) (2018) 293–315. Crossref, Google Scholar
- 18. S. Dahlke and C. Schneider, Besov regularity of parabolic and hyperbolic PDEs, preprint (2018), arXiv:1811.09428 [math.AP]. Google Scholar
- 19. , Nonlinear approximation, Acta Numer. 7 (1998) 51–150. Crossref, Google Scholar
- 20. , Compression of wavelet decompositions, Amer. J. Math. 114 (1992) 737–785. Crossref, ISI, Google Scholar
- 21. , High order regularity for conservation laws, Indiana Math. J. 39(2) (1990) 413–430. Crossref, ISI, Google Scholar
- 22. , Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29(4) (2009) 917–936. Crossref, Google Scholar
- 23. , Singularities in Boundary Value Problems,
Recherches en Mathématiques Appliquées , Vol. 22 (Masson, Paris; Springer-Verlag, Berlin, 1992). Google Scholar - 24. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, Vol. 69 (SIAM, Philadelphia, 2011). Reprint of the 1985 original. Google Scholar
- 25. , Elliptic Differential Equations: Theory and Numerical Treatment (Springer, Berlin, 1992). Crossref, Google Scholar
- 26. , Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains, Found. Comput. Math. 15 (2015) 561–589. Crossref, Google Scholar
- 27. , The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995) 161–219. Crossref, ISI, Google Scholar
- 28. , On stochastic partial differential equations with variable coefficients in domains, Stochastic Process. Appl. 112(2) (2004) 261–283. Crossref, Google Scholar
- 29. , A -theory of parabolic equations with unbounded leading coefficients on non-smooth domains, J. Math. Anal. Appl. 350 (2009) 294–305. Crossref, Google Scholar
- 30. , A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains, J. Theoret. Probab. 27(1) (2012) 107–136. Crossref, Google Scholar
- 31. , On the Sobolev space theory of parabolic and elliptic equations in domains, SIAM J. Math. Anal. 36(2) (2004) 618–642. Crossref, Google Scholar
- 32. , Boundary value problems for partial differential equations in non-smooth domains, Russian Math. Surveys 8 (1983) 1–86. Crossref, Google Scholar
- 33. , On the spectrum of the pencil generated by the Dirichlet problem for an elliptic equation in an angle, Siberian Math. J. 32(2) (1991) 238–251. Crossref, Google Scholar
- 34. , Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,
Mathematical Surveys and Monographs , Vol. 85 (American Mathematical Society, Providence, RI, 2001). Google Scholar - 35. , Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems: Theory, Algorithm, and Applications,
Lecture Notes in Computational Science and Engineering , Vol. 16 (Springer-Verlag, Berlin, 2001). Crossref, Google Scholar - 36. , Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods Appl. Anal. 7(1) (2000) 195–204. Google Scholar
- 37. , The first initial-boundary value problem for parabolic equations in a cone with edges, Vestn. St.-Petersbg. Univ. Ser. 1. Mat. Mekh. Asron. 2 60(3) (2015) 394–404. Google Scholar
- 38. , The Dirichlet–Cauchy problem for nonlinear hyperbolic equations in a domain with edges, Nonlinear Anal. 125 (2015) 457–467. Crossref, Google Scholar
- 39. , Elliptic Equations in Polyhedral Domains,
Mathematical Surveys and Monographs , Vol. 162 (American Mathematical Society, Providence, RI, 2010). Crossref, Google Scholar - 40. , Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,
De Gruyter Series in Nonlinear Analysis and Applications (Walter de Gruyter, 1996). Crossref, Google Scholar - 41. ,
Adaptive wavelet methods for solving operator equations: An overview , in Multiscale, Nonlinear and Adaptive Approximation, eds. R. DeVore, (Springer, Berlin, 2009), pp. 543–597; Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday. Crossref, Google Scholar - 42. , Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comput. 78 (2009) 1293–1318. Crossref, Google Scholar
- 43. , Galerkin Finite Element Methods for Parabolic Problems, 2nd edn.,
Springer Series in Computational Mathematics , Vol. 25 (Springer-Verlag, Berlin, 2006). Google Scholar - 44. , Theory of Function Spaces,
Monographs in Mathematics , Vol. 78 (Birkhäuser Verlag, Basel, 1983). Crossref, Google Scholar - 45. , Function Spaces and Wavelets on Domains,
EMS Tracts on Mathematics , Vol. 7 (EMS Publishing House, Zürich, 2008). Crossref, Google Scholar - 46. , Maximal -regularity for the Laplacian on Lipschitz domains, Math. Z. 255(4) (2007) 855–875. Crossref, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Differential Equations and Mathematical Analysis books in our Mathematics 2021 catalogue |