World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

HYPERMATRIX ALGEBRA AND IRREDUCIBLE ARITY IN HIGHER-ORDER SYSTEMS: CONCEPTS AND PERSPECTIVES

    https://doi.org/10.1142/S0219525923500078Cited by:1 (Source: Crossref)

    Theoretical and computational frameworks of complexity science are dominated by binary structures. This binary bias, seen in the ubiquity of pair-wise networks and formal binary operations in mathematical models, limits our capacity to faithfully capture irreducible polyadic interactions in higher-order systems. A paradigmatic example of a higher-order interaction is the Borromean link of three interlocking rings. In this paper, we propose a mathematical framework via hypergraphs and hypermatrix algebras that allows to formalize such forms of higher-order bonding and connectivity in a parsimonious way. Our framework builds on and extends current techniques in higher-order networks — still mostly rooted in binary structures such as adjacency matrices — and incorporates recent developments in higher-arity structures to articulate the compositional behavior of adjacency hypermatrices. Irreducible higher-order interactions turn out to be a widespread occurrence across natural sciences and socio-cultural knowledge representation. We demonstrate this by reviewing recent results in computer science, physics, chemistry, biology, ecology, social science, and cultural analysis through the conceptual lens of irreducible higher-order interactions. We further speculate that the general phenomenon of emergence in complex systems may be characterized by spatio-temporal discrepancies of interaction arity.

    References

    • 1. Abrams, P. A., Higher-order interactions stabilize dynamics in competitive network models, Am. Nat. 121 (1983) 887–891. Crossref, Web of ScienceGoogle Scholar
    • 2. Ainsworth, M. D. S., Attachments and other affectional bonds across the life cycle, in Attachment Across the Life Cycle (Routledge, 2006), pp. 41–59. Google Scholar
    • 3. Ampatzoglou, I. and Pavlovic, N., Rigorous derivation of a ternary boltzmann equation for a classical system of particles, Commun. Math. Phys. 387 (2021) 793–863. Crossref, Web of ScienceGoogle Scholar
    • 4. Andrews, G. R., Foundations of Multithreaded, Parallel, and Distributed Programming, Vol. 11 (Addison-Wesley Reading, 2000). Google Scholar
    • 5. Arsiwalla, X. D. and Gorard, J., Pregeometric spaces from wolfram model rewriting systems as homotopy types, preprint (2021), arXiv:2111.03460. Google Scholar
    • 6. Arsiwalla, X. D., Gorard, J. and Elshatlawy, H., Homotopies in multiway (nondeterministic) rewriting systems as n-fold categories, Complex Syst. 31(3) (2022) 261–277. Crossref, Web of ScienceGoogle Scholar
    • 7. Arsiwalla, X. D., Sole, R., Moulin-Frier, C., Herreros, I., Sanchez-Fibla, M. and Verschure, P., The morphospace of consciousness, NeuroSci 4(2) (2023) 79–102. Crossref, Web of ScienceGoogle Scholar
    • 8. Arsiwalla, X. D. and Verschure, P., Measuring the complexity of consciousness, Front. Neurosci. 12 (2018) 424. Crossref, Web of ScienceGoogle Scholar
    • 9. Arsiwalla, X. D. and Verschure, P. F., Integrated information for large complex networks, in The 2013 Int. Joint Conf. Neural Networks (IJCNN) (IEEE, 2013), pp. 1–7. CrossrefGoogle Scholar
    • 10. Arsiwalla, X. D. and Verschure, P. F., The global dynamical complexity of the human brain network, Appl. Netw. Sci. 1 (2016) 1–13. CrossrefGoogle Scholar
    • 11. Arsiwalla, X. D. and Verschure, P. F., High integrated information in complex networks near criticality, in Int. Conf. Artificial Neural Networks (Springer, 2016), pp. 184–191. CrossrefGoogle Scholar
    • 12. Attiya, H. and Welch, J., Distributed Computing: Fundamentals, Simulations, and Advanced Topics, Vol. 19 (John Wiley & Sons, 2004). CrossrefGoogle Scholar
    • 13. Baas, N., New structures in complex systems, Eur. Phys. J.: Spec. Top. 178 (2009) 25–44. Crossref, Web of ScienceGoogle Scholar
    • 14. Baas, N. A., On structure and organization: An organizing principle, Int. J. Gen. Syst. 42 (2013) 170–196. Crossref, Web of ScienceGoogle Scholar
    • 15. Baas, N. A., Higher order architecture of collections of objects, Int. J. Gen. Syst. 44 (2015) 55–75. Crossref, Web of ScienceGoogle Scholar
    • 16. Baas, N. A., On the mathematics of higher structures, Int. J. Gen. Syst. 48 (2019) 603–624. Crossref, Web of ScienceGoogle Scholar
    • 17. Baas, N. A., On the philosophy of higher structures, Int. J. Gen. Syst. 48 (2019) 463–475. Crossref, Web of ScienceGoogle Scholar
    • 18. Baas, N. A., Fedorov, D., Jensen, A., Riisager, K., Volosniev, A. and Zinner, N., Higher-order Brunnian structures and possible physical realizations, Phys. At. Nucl. 77 (2014) 336–343. Crossref, Web of ScienceGoogle Scholar
    • 19. Baez, J. C. and Dolan, J., Higher-dimensional algebra III. n-categories and the algebra of opetopes, Adv. Math. 135 (1998) 145–206. Crossref, Web of ScienceGoogle Scholar
    • 20. Baez, J. C. and Huerta, J., An invitation to higher gauge theory, Gen. Relativ. Gravit. 43 (2011) 2335–2392. Crossref, Web of ScienceGoogle Scholar
    • 21. Balzarini, R. N., Dharma, C., Kohut, T., Holmes, B. M., Campbell, L., Lehmiller, J. J. and Harman, J. J., Demographic comparison of American individuals in polyamorous and monogamous relationships, J. Sex Res. 56 (2019) 681–694. Crossref, Web of ScienceGoogle Scholar
    • 22. Battiston, F., Amico, E., Barrat, A., Bianconi, G., de Arruda, G. F., Franceschiello, B., Iacopini, I., Kéfi, S., Latora, V., Moreno, Y., Murray, M. M., Peixoto, T. P., Vaccarino, F. and Petri, G., The physics of higher-order interactions in complex systems, Nat. Phys. 17 (2021) 1093–1098. Crossref, Web of ScienceGoogle Scholar
    • 23. Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G. and Petri, G., Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep. 874 (2020) 1–92. Crossref, Web of ScienceGoogle Scholar
    • 24. Battiston, F. and Petri, G., Higher-Order Systems (Springer Nature, 2022). CrossrefGoogle Scholar
    • 25. Benini, M., Schenkel, A. and Woike, L., Operads for algebraic quantum field theory, Commun. Contemp. Math. 23 (2021) 2050007. Link, Web of ScienceGoogle Scholar
    • 26. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. and Kleinberg, J., Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. USA 115 (2018) E11221–E11230. Crossref, Web of ScienceGoogle Scholar
    • 27. Benson, A. R., Gleich, D. F. and Leskovec, J., Higher-order organization of complex networks, Science 353 (2016) 163–166. Crossref, Web of ScienceGoogle Scholar
    • 28. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L. and Schwede, T., Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology, Sci. Rep. 7 (2017) 1–15. Crossref, Web of ScienceGoogle Scholar
    • 29. Bhalla, U. S., Molecular computation in neurons: A modeling perspective, Curr. Opin. Neurobiol. 25 (2014) 31–37. Crossref, Web of ScienceGoogle Scholar
    • 30. Bhasin, V. S. and Mazumdar, I., Few Body Dynamics, Efimov Effect and Halo Nuclei (Springer, 2021). CrossrefGoogle Scholar
    • 31. Biamonte, J. and Bergholm, V., Tensor networks in a nutshell, preprint (2017), arXiv:1708.00006. Google Scholar
    • 32. Bianconi, G. et al., Complex systems in the spotlight: Next steps after the 2021 nobel prize in physics, J. Phys.: Complex. 4 (2023) 010201. CrossrefGoogle Scholar
    • 33. Billick, I. and Case, T. J., Higher order interactions in ecological communities: What are they and how can they be detected? Ecology 75 (1994) 1529–1543. Crossref, Web of ScienceGoogle Scholar
    • 34. Bon, M., Vernizzi, G., Orland, H. and Zee, A., Topological classification of RNA structures, J. Mol. Biol. 379 (2008) 900–911. Crossref, Web of ScienceGoogle Scholar
    • 35. Boynton, R. M., Human color perception, in Science of Vision (Springer, 1990), pp. 211–253. CrossrefGoogle Scholar
    • 36. Bratseth, J., Pettersen, H. and Solbakken, L., A tensor formalism for computer science, in 2021 Int. Symp. Electrical, Electronics and Information Engineering (ACM, 2021), pp. 295–300. CrossrefGoogle Scholar
    • 37. Burr, D. C., Turi, M. and Anobile, G., Subitizing but not estimation of numerosity requires attentional resources, J. Vis. 10 (2010) 20. Crossref, Web of ScienceGoogle Scholar
    • 38. Carlsson, R., N-ary algebras, Nagoya Math. J. 78 (1980) 45–56. Crossref, Web of ScienceGoogle Scholar
    • 39. Carlucci, L., Ciani, G. and Proserpio, D. M., Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: Re-examination of some puzzling networks, CrystEngComm 5 (2003) 269–279. Crossref, Web of ScienceGoogle Scholar
    • 40. Cayley, A., The Collected Mathematical Papers of Arthur Cayley, Vol. 7 (Cambridge University Press, 1894). Google Scholar
    • 41. Chen, J., Rauch, C. A., White, J. H., Englund, P. T. and Cozzarelli, N. R., The topology of the kinetoplast dna network, Cell 80 (1995) 61–69. Crossref, Web of ScienceGoogle Scholar
    • 42. Cheng, E., Weak n-categories: Opetopic and multitopic foundations, J. Pure Appl. Algebra 186 (2004) 109–137. Crossref, Web of ScienceGoogle Scholar
    • 43. Chichak, K. S., Cantrill, S. J., Pease, A. R., Chiu, S.-H., Cave, G. W., Atwood, J. L. and Stoddart, J. F., Molecular borromean rings, Science 304 (2004) 1308–1312. Crossref, Web of ScienceGoogle Scholar
    • 44. Clements, D. H., Sarama, J. and MacDonald, B. L., Subitizing: The neglected quantifier, in Constructing Number (Springer, 2019), pp. 13–45. CrossrefGoogle Scholar
    • 45. Coecke, B. and Duncan, R., Interacting quantum observables: Categorical algebra and diagrammatics, New J. Phys. 13 (2011) 043016. Crossref, Web of ScienceGoogle Scholar
    • 46. Coecke, B. and Kissinger, A., Picturing quantum processes, in Int. Conf. Theory and Application of Diagrams (Springer, 2018), pp. 28–31. CrossrefGoogle Scholar
    • 47. Cohen, E., Fifty years of kinetic theory, Physica A 194 (1993) 229–257. Crossref, Web of ScienceGoogle Scholar
    • 48. Cornelius, T. and Glockle, W., Efimov states for three 4He atoms? J. Chem. Phys. 85 (1986) 3906–3912. Crossref, Web of ScienceGoogle Scholar
    • 49. Corry, L., Modern Algebra and the Rise of Mathematical Structures (Springer Science & Business Media, 2003). Google Scholar
    • 50. Courtney, O. T. and Bianconi, G., Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E 93 (2016) 062311. Crossref, Web of ScienceGoogle Scholar
    • 51. David, A., Islam, S., Tankhilevich, E. and Sternberg, M. J., The alphafold database of protein structures: A biologist’s guide, J. Mol. Biol. 434 (2022) 167336. Crossref, Web of ScienceGoogle Scholar
    • 52. Davvaz, B., Dudek, W. A. and Vougiouklis, T., A generalization of n-ary algebraic systems, Commun. Algebra 37 (2009) 1248–1263. Crossref, Web of ScienceGoogle Scholar
    • 53. de Azcárraga, J. A. and Izquierdo, J. M., n-ary algebras: A review with applications, J. Phys. A: Math. Theor. 43 (2010) 293001. Crossref, Web of ScienceGoogle Scholar
    • 54. del Mármol, J., Yedlin, M. and Ruta, V., The structural basis of odorant recognition in insect olfactory receptors, Nature 597 (2021) 126–131. Crossref, Web of ScienceGoogle Scholar
    • 55. Dobnikar, J., Brunner, M., von Grünberg, H.-H. and Bechinger, C., Three-body interactions in colloidal systems, Phys. Rev. E 69 (2004) 031402. Crossref, Web of ScienceGoogle Scholar
    • 56. Dobnikar, J., Chen, Y., Rzehak, R. and von Grünberg, H.-H., Many-body interactions in colloidal suspensions, J. Phys. Condens. Matter 15 (2002) S263. Crossref, Web of ScienceGoogle Scholar
    • 57. Dudek, W. A., Remarks to glazek’s results on n-ary groups, preprint (2007), arXiv:0704.2749. Google Scholar
    • 58. Dunbar, R. I., The social brain: Mind, language, and society in evolutionary perspective, Annual Review of Anthropology 32 (2003) 163–181. Crossref, Web of ScienceGoogle Scholar
    • 59. Efimov, V., Energy levels arising from resonant two-body forces in a three-body system, Phys. Lett. B 33 (1970) 563–564. Crossref, Web of ScienceGoogle Scholar
    • 60. Eliassi-Rad, T., Latora, V., Rosvall, M. and Scholtes, I., Higher-order graph models: From theoretical foundations to machine learning (Dagstuhl seminar 21352), Dagstuhl Rep. 11 (2021) 139–178. Google Scholar
    • 61. Estrada, E. and Knight, P. A., A First Course in Network Theory (Oxford University Press, USA, 2015). Google Scholar
    • 62. Fatemi, B., Taslakian, P., Vazquez, D. and Poole, D., Knowledge hypergraphs: Prediction beyond binary relations, preprint (2019), arXiv:1906.00137. Google Scholar
    • 63. Fedorov, D. V., Jensen, A. S. and Riisager, K., Efimov states in halo nuclei, Phys. Rev. Lett. 73 (1994) 2817–2820. Crossref, Web of ScienceGoogle Scholar
    • 64. Filippov, V. T., n-lie algebras, Sib. Math. J. 26 (1985) 879–891. Crossref, Web of ScienceGoogle Scholar
    • 65. Flack, J. C., Coarse-graining as a downward causation mechanism, Philos. Trans. Roy. Soc. A 375 (2017) 20160338. Crossref, Web of ScienceGoogle Scholar
    • 66. Fraisse, R., Theory of Relations (Elsevier, 2000). Google Scholar
    • 67. Gil-Ramírez, G., Leigh, D. A. and Stephens, A. J., Catenanes: Fifty years of molecular links, Angew. Chem. Int. Ed. 54 (2015) 6110–6150. Crossref, Web of ScienceGoogle Scholar
    • 68. Girard-Buttoz, C., Surbeck, M., Samuni, L., Boesch, C., Fruth, B., Crockford, C., Hohmann, G. and Wittig, R. M., Variable use of polyadic grooming and its effect on access to social partners in wild chimpanzees and bonobos, Anim. Behav. 168 (2020) 211–224. Crossref, Web of ScienceGoogle Scholar
    • 69. Gnang, E. K., A combinatorial approach to the algebra of hypermatrices, preprint (2014), arXiv:1403.3134. Google Scholar
    • 70. Gnang, E. K., A hypermatrix analog of the general linear group, Notices Amer. Math. Soc. 68 (2021) 1693–1699. CrossrefGoogle Scholar
    • 71. Gnang, E. K. and Filmus, Y., On the Bhattacharya-Mesner rank of third order hypermatrices, Linear Algebra Appl. 588 (2020) 391–418. Crossref, Web of ScienceGoogle Scholar
    • 72. Gorard, J., Namuduri, M. and Arsiwalla, X. D., Zx-calculus and extended hypergraph rewriting systems I: A multiway approach to categorical quantum information theory, preprint (2020), arXiv:2010.02752. Google Scholar
    • 73. Gorard, J., Namuduri, M. and Arsiwalla, X. D., Fast automated reasoning over string diagrams using multiway causal structure, preprint (2021), arXiv:2105.04057. Google Scholar
    • 74. Gorard, J., Namuduri, M. and Arsiwalla, X. D., Zx-calculus and extended wolfram model systems II: Fast diagrammatic reasoning with an application to quantum circuit simplification, preprint (2021), arXiv:2103.15820. Google Scholar
    • 75. Gunaratne, S. A., Paper, printing and the printing press: A horizontally integrative macrohistory analysis, Gazette 63 (2001) 459–479. CrossrefGoogle Scholar
    • 76. Hammer, H.-W. and Platter, L., Efimov states in nuclear and particle physics, Annu. Rev. Nucl. Part. Sci. 60 (2010) 207–236. Crossref, Web of ScienceGoogle Scholar
    • 77. Hogan, A. et al., Knowledge graphs, ACM Comput. Surv. 54 (2021) 1–37. Crossref, Web of ScienceGoogle Scholar
    • 78. Högberg, A., Gärdenfors, P. and Larsson, L., Knowing, learning and teaching–how homo became docens, Camb. Archaeol. J. 25 (2015) 847–858. Crossref, Web of ScienceGoogle Scholar
    • 79. Hollings, C. and Lawson, M. V., Wagner’s Theory of Generalised Heaps, Vol. 21 (Springer, 2017). CrossrefGoogle Scholar
    • 80. Homans, G. C., Hare, A. P. and Polley, R. B., The Human Group (Routledge, 2017). CrossrefGoogle Scholar
    • 81. Huang, F. W. and Reidys, C. M., Shapes of topological RNA structures, Math. Biosci. 270 (2015) 57–65. Crossref, Web of ScienceGoogle Scholar
    • 82. Iacopini, I., Karsai, M. and Barrat, A., The temporal dynamics of group interactions in higher-order social networks, preprint (2023), arXiv:2306.09967. Google Scholar
    • 83. Kay, E. R. and Leigh, D. A., Rise of the molecular machines, Angew. Chem. Int. Ed. 54 (2015) 10080–10088. Crossref, Web of ScienceGoogle Scholar
    • 84. Kempes, C. P. and Krakauer, D. C., The multiple paths to multiple life, J. Mol. Evol. 89 (2021) 415–426. Crossref, Web of ScienceGoogle Scholar
    • 85. Kerner, R., The cubic chessboard, Class. Quantum Grav. 14 (1997) A203. Crossref, Web of ScienceGoogle Scholar
    • 86. Kerner, R., Ternary and non-associative structures, Int. J. Geom. Methods Mod. Phys. 5 (2008) 1265–1294. Link, Web of ScienceGoogle Scholar
    • 87. King, T. D., Human color perception, cognition, and culture: Why red is always red, in Color Imaging X: Processing, Hardcopy, and Applications, Vol. 5667 (International Society for Optics and Photonics, 2005), pp. 234–242. CrossrefGoogle Scholar
    • 88. Klamt, S., Haus, U.-U. and Theis, F., Hypergraphs and cellular networks, PLoS Comput. Biol. 5 (2009) e1000385. Crossref, Web of ScienceGoogle Scholar
    • 89. Koch, C., Massimini, M., Boly, M. and Tononi, G., Neural correlates of consciousness: Progress and problems, Nat. Rev. Neurosci. 17 (2016) 307–321. Crossref, Web of ScienceGoogle Scholar
    • 90. Kohler, T. A., Bird, D. and Wolpert, D. H., Social scale and collective computation: Does information processing limit rate of growth in scale? J. Soc. Comput. 3 (2022) 1–17. CrossrefGoogle Scholar
    • 91. Kolar, Z., Heap-ternary algebraic structure, Math. Commun. 5 (2000) 87–95. Google Scholar
    • 92. Krakauer, D., Bertschinger, N., Olbrich, E., Flack, J. C. and Ay, N., The information theory of individuality, Theory Biosci. 139 (2020) 209–223. Crossref, Web of ScienceGoogle Scholar
    • 93. Krieg, M., Fläschner, G., Alsteens, D., Gaub, B. M., Roos, W. H., Wuite, G. J., Gaub, H. E., Gerber, C., Dufrêne, Y. F. and Müller, D. J., Atomic force microscopy-based mechanobiology, Nat. Rev. Phys. 1 (2019) 41–57. CrossrefGoogle Scholar
    • 94. Leinster, T., Higher Operads, Higher Categories, Vol. 298 (Cambridge University Press, 2004). CrossrefGoogle Scholar
    • 95. Letten, A. D. and Stouffer, D. B., The mechanistic basis for higher-order interactions and non-additivity in competitive communities, Ecol. Lett. 22 (2019) 423–436. Crossref, Web of ScienceGoogle Scholar
    • 96. Levine, J. M., Bascompte, J., Adler, P. B. and Allesina, S., Beyond pairwise mechanisms of species coexistence in complex communities, Nature 546 (2017) 56–64. Crossref, Web of ScienceGoogle Scholar
    • 97. Lurie, J., Higher Topos Theory (Princeton University Press, 2009). CrossrefGoogle Scholar
    • 98. Main, K. H., Provan, J. I., Haynes, P. J., Wells, G., Hartley, J. A. and Pyne, A. L., Atomic force microscopy–a tool for structural and translational dna research, APL Bioeng. 5 (2021) 031504. Crossref, Web of ScienceGoogle Scholar
    • 99. Markl, M., Shnider, S. and Stasheff, J. D., Operads in Algebra, Topology and Physics, Vol. 96 (American Mathematical Society, 2002). Google Scholar
    • 100. Márquez, L. M., Redman, R. S., Rodriguez, R. J. and Roossinck, M. J., A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance, Science 315 (2007) 513–515. Crossref, Web of ScienceGoogle Scholar
    • 101. Marshall, S. M., Moore, D. G., Murray, A. R., Walker, S. I. and Cronin, L., Formalising the pathways to life using assembly spaces, Entropy 24 (2022) 884. Crossref, Web of ScienceGoogle Scholar
    • 102. Massouros, C. and Massouros, G., An overview of the foundations of the hypergroup theory, Mathematics 9 (2021) 1014. Crossref, Web of ScienceGoogle Scholar
    • 103. Mayfield, M. M. and Stouffer, D. B., Higher-order interactions capture unexplained complexity in diverse communities, Nat. Ecol. Evol. 1 (2017) 1–7. Crossref, Web of ScienceGoogle Scholar
    • 104. Mediano, P. A., Rosas, F. E., Farah, J. C., Shanahan, M., Bor, D. and Barrett, A. B., Integrated information as a common signature of dynamical and information-processing complexity, Chaos 32 (2022) 013115. Crossref, Web of ScienceGoogle Scholar
    • 105. Mesner, D. M. and Bhattacharya, P., Association schemes on triples and a ternary algebra, J. Combin. Theory Ser. A 55 (1990) 204–234. Crossref, Web of ScienceGoogle Scholar
    • 106. Mesner, D. M. and Bhattacharya, P., A ternary algebra arising from association schemes on triples, J. Algebra 164 (1994) 595–613. Crossref, Web of ScienceGoogle Scholar
    • 107. Meyer, C. D., Forgan, R. S., Chichak, K. S., Peters, A. J., Tangchaivang, N., Cave, G. W. V., Khan, S. I., Cantrill, S. J. and Stoddart, J. F., The dynamic chemistry of molecular borromean rings and solomon knots, Chemistry 16 (2010) 12570–12581. Crossref, Web of ScienceGoogle Scholar
    • 108. Michieletto, D., Marenduzzo, D. and Orlandini, E., Is the kinetoplast DNA a percolating network of linked rings at its critical point? Phys. Biol. 12 (2015) 036001. Crossref, Web of ScienceGoogle Scholar
    • 109. Moskovich, D. and Carmi, A. Y., Tangle machines, Proc. R. Soc. A 471 (2015) 20150111. CrossrefGoogle Scholar
    • 110. Naidon, P. and Endo, S., Efimov physics: A review, Rep. Prog. Phys. 80 (2017) 056001. Crossref, Web of ScienceGoogle Scholar
    • 111. Nambu, Y., Generalized hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405–2414. Crossref, Web of ScienceGoogle Scholar
    • 112. Nambu, Y. and Han, M.-Y., Three triplets, paraquarks, and colored quarks, Phys. Rev. D 10 (1974) 674. Crossref, Web of ScienceGoogle Scholar
    • 113. Nayak, C., Simon, S. H., Stern, A., Freedman, M. and Sarma, S. D., Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083. Crossref, Web of ScienceGoogle Scholar
    • 114. Neuhäuser, L., Lambiotte, R. and Schaub, M. T., Consensus dynamics on temporal hypergraphs, Phys. Rev. E 104 (2021) 064305. Crossref, Web of ScienceGoogle Scholar
    • 115. Neuhäuser, L., Mellor, A. and Lambiotte, R., Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E 101 (2020) 032310. Crossref, Web of ScienceGoogle Scholar
    • 116. Newman, M. E., The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98 (2001) 404–409. Crossref, Web of ScienceGoogle Scholar
    • 117. Nickel, M., Murphy, K., Tresp, V. and Gabrilovich, E., A review of relational machine learning for knowledge graphs, Proc. IEEE 104 (2015) 11–33. Crossref, Web of ScienceGoogle Scholar
    • 118. Niemyska, W., Rubach, P., Gren, B. A., Nguyen, M. L., Garstka, W., da Silva, F. B., Rawdon, E. J. and Sulkowska, J. I., Alphaknot: Server to analyze entanglement in structures predicted by alphafold methods, Nucleic Acids Res. 50 (2022) W44–W50. Crossref, Web of ScienceGoogle Scholar
    • 119. Nooren, I. M. and Thornton, J. M., Diversity of protein–protein interactions, EMBO J. 22 (2003) 3486–3492. Crossref, Web of ScienceGoogle Scholar
    • 120. Núñez, R. and Fias, W., Ancestral mental number lines: What is the evidence? Cogn. Sci. 41 (2017) 2262–2266. Crossref, Web of ScienceGoogle Scholar
    • 121. Núñez, R. E., Is there really an evolved capacity for number? Trends Cogn. Sci. 21 (2017) 409–424. Crossref, Web of ScienceGoogle Scholar
    • 122. Oizumi, M., Albantakis, L. and Tononi, G., From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0, PLoS Comput. Biol. 10 (2014) e1003588. Crossref, Web of ScienceGoogle Scholar
    • 123. Ornes, S., How big data carried graph theory into new dimensions, Quanta Magazine (2021). Google Scholar
    • 124. Ortiz-Muñoz, A., Medina-Abarca, H. F. and Fontana, W., Combinatorial protein–protein interactions on a polymerizing scaffold, Proc. Natl. Acad. Sci. USA 117 (2020) 2930–2937. Crossref, Web of ScienceGoogle Scholar
    • 125. Overmann, K. A., The material difference in human cognition, Adapt. Behav. 29 (2021) 123–135. Crossref, Web of ScienceGoogle Scholar
    • 126. Overmann, K. A., Early writing: A cognitive archaeological perspective on literacy and numeracy, Visible Lang. 56 (2022) 8–44. CrossrefGoogle Scholar
    • 127. Pan, M. and Su, C.-Y., Coordination assembly of borromean structures, CrystEngComm 16 (2014) 7847–7859. Crossref, Web of ScienceGoogle Scholar
    • 128. Patania, A., Petri, G. and Vaccarino, F., The shape of collaborations, EPJ Data Sci. 6 (2017) 1–16. Crossref, Web of ScienceGoogle Scholar
    • 129. Peirce, C. S., Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole’s Calculus of Logic (Welch, Bigelow, 1870). Google Scholar
    • 130. Peirce, C. S., On the algebra of logic, Am. J. Math. 3 (1880) 15–57. CrossrefGoogle Scholar
    • 131. Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T. and Pintscher, L., From freebase to wikidata: The great migration, in Proc. 25th Int. Conf. World Wide Web (ACM, 2016), pp. 1419–1428. CrossrefGoogle Scholar
    • 132. Phizicky, E. M. and Fields, S., Protein-protein interactions: Methods for detection and analysis, Microbiol. Rev. 59 (1995) 94–123. CrossrefGoogle Scholar
    • 133. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A.-L., Hierarchical organization of modularity in metabolic networks, Science 297 (2002) 1551–1555. Crossref, Web of ScienceGoogle Scholar
    • 134. Roopin, M., Thornhill, D. J., Santos, S. R. and Chadwick, N. E., Ammonia flux, physiological parameters, and symbiodinium diversity in the anemonefish symbiosis on red sea coral reefs, Symbiosis 53 (2011). Crossref, Web of ScienceGoogle Scholar
    • 135. Rosas, F. E., Mediano, P. A., Luppi, A. I., Varley, T. F., Lizier, J. T., Stramaglia, S., Jensen, H. J. and Marinazzo, D., Disentangling high-order mechanisms and high-order behaviours in complex systems, Nat. Phys. 18 (2022) 476–477. Crossref, Web of ScienceGoogle Scholar
    • 136. Rybolowicz, B., Topics in the theory of trusses, Ph.D. thesis, Swansea University (2021). Google Scholar
    • 137. Rybołowicz, B. and Zapata-Carratalá, C., Biunit pairs in semiheaps and associated semigroups, preprint (2022), arXiv:2209.07203. Google Scholar
    • 138. Scagliarini, T., Marinazzo, D., Guo, Y., Stramaglia, S. and Rosas, F. E., Quantifying high-order interdependencies on individual patterns via the local o-information: Theory and applications to music analysis, preprint (2021), arXiv:2108.11625. Google Scholar
    • 139. Schich, M., Revealing matrices, in Beautiful Visualization: Looking at Data Through the Eyes of Experts (O’Reilly Media, 2010), pp. 227–254. Google Scholar
    • 140. Schill, G., Catenanes, Rotaxanes, and Knots, Vol. 22 (Elsevier, 2017). Google Scholar
    • 141. Schoenly, K., Beaver, R. and Heumier, T., On the trophic relations of insects: A food-web approach, Am. Nat. 137 (1991) 597–638. Crossref, Web of ScienceGoogle Scholar
    • 142. Schweitzer, F., Agents, Networks, Evolution (World Scientific, 2022). LinkGoogle Scholar
    • 143. Sienko, T., Adamatzky, A. and Rambidi, N., Molecular Computing (MIT Press, 2003). CrossrefGoogle Scholar
    • 144. Simpson, C., Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond, Vol. 19 (Cambridge University Press, 2011). CrossrefGoogle Scholar
    • 145. Solé, R. and Bascompte, J., Self-Organization in Complex Ecosystems. (MPB-42) (Princeton University Press, 2012). Google Scholar
    • 146. Song, Y. and Buchwald, P., Tnf superfamily protein-protein interactions: Feasibility of small-molecule modulation, Curr. Drug Targets 16 (2015) 393–408. Crossref, Web of ScienceGoogle Scholar
    • 147. Stoddart, J. F., Dawning of the age of molecular nanotopology, Nano Lett. 20 (2020) 5597–5600. Crossref, Web of ScienceGoogle Scholar
    • 148. Tarski, A., On the calculus of relations, J. Symb. Log. 6 (1941) 73–89. CrossrefGoogle Scholar
    • 149. Taylor, W. R. and Lin, K., Protein knots: A tangled problem, Nature 421 (2003) 25–25. Crossref, Web of ScienceGoogle Scholar
    • 150. Tononi, G., An information integration theory of consciousness, BMC Neurosci. 5 (2004) 1–22. Crossref, Web of ScienceGoogle Scholar
    • 151. Tononi, G., Boly, M., Massimini, M. and Koch, C., Integrated information theory: From consciousness to its physical substrate, Nat. Rev. Neurosci. 17 (2016) 450–461. Crossref, Web of ScienceGoogle Scholar
    • 152. Tononi, G. and Edelman, G. M., Consciousness and complexity, Science 282 (1998) 1846–1851. Crossref, Web of ScienceGoogle Scholar
    • 153. Torfing, J., Governance networks, in The Oxford Handbook of Governance (Oxford University Press, 2012), pp. 99–113. Google Scholar
    • 154. Twyman, M. and Contractor, N., Team assembly, in Strategies for Team Science Success (Springer, 2019), pp. 217–240. CrossrefGoogle Scholar
    • 155. Valverde, S., Vidiella, B., Montanez, R., Fraile, A., Sacristán, S. and García-Arenal, F., Coexistence of nestedness and modularity in host–pathogen infection networks, Nat. Ecol. Evol. 4 (2020) 568–577. Crossref, Web of ScienceGoogle Scholar
    • 156. Wagner, A. and Fell, D. A., The small world inside large metabolic networks, Proc. R. Soc. B 268 (2001) 1803–1810. Crossref, Web of ScienceGoogle Scholar
    • 157. Wikipedia, T. F. E., Arity (2022), https://en.wikipedia.org/w/index.php?title= Arity&oldid=1062674633. Google Scholar
    • 158. Wolfram, S., A New Kind of Science (Wolfram Media, USA, 2002). Google Scholar
    • 159. Wolfram, S., Multicomputation as a fourth general paradigm for theoretical science, Wolfram Media (2021). Google Scholar
    • 160. Wootton, J. T., Putting the pieces together: Testing the independence of interactions among organisms, Ecology 75 (1994) 1544–1551. Crossref, Web of ScienceGoogle Scholar
    • 161. You, Y., Bibo, J. and Pollmann, F., Higher-order entanglement and many-body invariants for higher-order topological phases, Phys. Rev. Res. 2 (2020) 033192. CrossrefGoogle Scholar
    • 162. Yu, S., Yang, H., Nakahara, H., Santos, G. S., Nikolic, D. and Plenz, D., Higher-order interactions characterized in cortical activity, J. Neurosci. 31 (2011) 17514–17526. Crossref, Web of ScienceGoogle Scholar
    • 163. Zapata-Carratala, C., Higher-arity science project (2023), https://www.arity.science/. Google Scholar
    • 164. Zapata-Carratala, C. and Arsiwalla, X. D., An invitation to higher arity science, preprint (2022), arXiv:2201.09738. Google Scholar
    • 165. Zapata-Carratala, C., Arsiwalla, X. D. and Beynon, T., Heaps of fish: Arrays, generalized associativity and heapoids, preprint (2022), arXiv:2205.05456. Google Scholar
    • 166. Zhou, D., Huang, J. and Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Adv. Neural Inf. Process. Syst. 19 (2006) 1601–1608. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!