World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE ACTUATION SPECTRUM OF SPATIOTEMPORAL NETWORKS WITH POWER-LAW TIME DEPENDENCIES

    https://doi.org/10.1142/S0219525919500231Cited by:3 (Source: Crossref)

    The ability to steer the state of a dynamical network towards a desired state within a time horizon is intrinsically dependent on the number of driven nodes considered, as well as the network’s topology. The trade-off between time-to-control and the minimum number of driven nodes is captured by the notion of the actuation spectrum (AS). We study the actuation spectra of a variety of artificial and real-world networked systems, modeled by fractional-order dynamics that are capable of capturing non-Markovian time properties with power-law dependencies. We find evidence that, in both types of networks, the actuation spectra are similar when the time-to-control is less or equal to about 1/5 of the size of the network. Nonetheless, for a time-to-control larger than the network size, the minimum number of driven nodes required to attain controllability in networks with fractional-order dynamics may still decrease in comparison with other networks with Markovian properties. These differences suggest that the minimum number of driven nodes can be used to determine the true dynamical nature of the network. Furthermore, such differences also suggest that new generative models are required to reproduce the actuation spectra of real fractional-order dynamical networks.

    References

    • 1. Anastasio, T. J., The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol. Cybernet. 72 [1994] 69–79. Crossref, Web of ScienceGoogle Scholar
    • 2. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C. E., Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E 64 [2001] 061907. Crossref, Web of ScienceGoogle Scholar
    • 3. Bach, F. et al., Learning with submodular functions: A convex optimization perspective, Found. Trends® Mach. Learn. 6 [2013] 145–373. CrossrefGoogle Scholar
    • 4. Bagley, R. L. and Torvik, P., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol. 27 [1983] 201–210. Crossref, Web of ScienceGoogle Scholar
    • 5. Baleanu, D., Machado, J. A. T. and Luo, A. C., Fractional Dynamics and Control (Springer Science & Business Media, 2011). Google Scholar
    • 6. Bassett, D. S. and Bullmore, E., Small-world brain networks, Neuroscientist 12 [2006] 512–523. Crossref, Web of ScienceGoogle Scholar
    • 7. Becker, C. O., Pequito, S., Pappas, G. J., Miller, M. B., Grafton, S. T., Bassett, D. S. and Preciado, V. M., Spectral mapping of brain functional connectivity from diffusion imaging, Sci. Rep. 8 [2018] 1411. Crossref, Web of ScienceGoogle Scholar
    • 8. Becker, C. O., Pequito, S., Pappas, G. J. and Preciado, V. M., Network design for controllability metrics, in 2017 IEEE 56th Annual Conf. Decision and Control (CDC) (IEEE, 2017), pp. 4193–4198. CrossrefGoogle Scholar
    • 9. Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M., Time Series Analysis: Forecasting and Control (John Wiley & Sons, 2015). Google Scholar
    • 10. Boyd, S. and Lall, S., EE263: Introduction to linear dynamical systems, Online Lecture Notes, Stanford University [2008] Google Scholar
    • 11. Chatterjee, S., Romero, O. and Pequito, S., A separation principle for discrete-time fractional-order dynamical systems and its implications to closed-loop neurotechnology, IEEE Control Syst. Lett. 3 [2019] 691–696. CrossrefGoogle Scholar
    • 12. Chen, C.-T., Linear System Theory and Design (Oxford University Press, Inc., 1998). Google Scholar
    • 13. Egerstedt, M., Complex networks: Degrees of control, Nature 473 [2011] 158–159. Crossref, Web of ScienceGoogle Scholar
    • 14. Gorenflo, R. and Mainardi, F., Fractional calculus, in Fractals and Fractional Calculus in Continuum Mechanics (Springer, 1997), pp. 223–276. CrossrefGoogle Scholar
    • 15. Gupta, G., Pequito, S. and Bogdan, P., Dealing with unknown unknowns: Identification and selection of minimal sensing for fractional dynamics with unknown inputs, in Proc. 2018 American Control Conf. (IEEE, 2018), pp. 2814–2820. CrossrefGoogle Scholar
    • 16. Gupta, G., Pequito, S. and Bogdan, P., Learning latent fractional dynamics with unknown unknowns, in Proc. 2019 American Control Conf. (IEEE, 2019), pp. 217–222. CrossrefGoogle Scholar
    • 17. Hespanha, J. P., Linear Systems Theory (Princeton University Press, 2018). Google Scholar
    • 18. Klamka, J., Controllability and minimum energy control of fractional discrete-time systems, in Controllability and Minimum Energy Control (Springer, 2019), pp. 89–98. CrossrefGoogle Scholar
    • 19. Liu, Y.-Y. and Barabási, A.-L., Control principles of complex systems, Rev. Mod. Phys. 88 [2016] 035006. Crossref, Web of ScienceGoogle Scholar
    • 20. Lovász, L., Submodular functions and convexity, in Mathematical Programming The State of the Art (Springer, 1983), pp. 235–257. CrossrefGoogle Scholar
    • 21. Lundstrom, B. N., Higgs, M. H., Spain, W. J. and Fairhall, A. L., Fractional differentiation by neocortical pyramidal neurons, Nat. Neurosci. 11 [2008] 1335. Crossref, Web of ScienceGoogle Scholar
    • 22. Machado, J., Discrete-time fractional-order controllers, Fract. Calc. Appl. Anal. 4 [2001] 47–66. Google Scholar
    • 23. Olshevsky, A., Minimal controllability problems, IEEE Trans. Control Netw. Syst. 1 [2014] 249–258. CrossrefGoogle Scholar
    • 24. Ortigueira, M. D., Coito, F. J. and Trujillo, J. J., Discrete-time differential systems, Signal Process. 107 [2015] 198–217. Crossref, Web of ScienceGoogle Scholar
    • 25. Pasqualetti, F., Zampieri, S. and Bullo, F., Controllability metrics, limitations and algorithms for complex networks, IEEE Trans. Control Netw. Syst. 1 [2014] 40–52. CrossrefGoogle Scholar
    • 26. Pequito, S., Bogdan, P. and Pappas, G. J., Minimum number of probes for brain dynamics observability, in 2015 54th IEEE Conf. Decision and Control (CDC) (IEEE, 2015), pp. 306–311. CrossrefGoogle Scholar
    • 27. Pequito, S., Kar, S. and Aguiar, A. P., A framework for structural input/output and control configuration selection in large-scale systems, IEEE Trans. Autom. Control 61 [2015] 303–318. Crossref, Web of ScienceGoogle Scholar
    • 28. Pequito, S., Preciado, V. and Pappas, G. J., Distributed leader selection, in 2015 54th IEEE Conf. Decision and Control (CDC) (IEEE, 2015), pp. 962–967. CrossrefGoogle Scholar
    • 29. Pequito, S., Preciado, V. M., Barabási, A.-L. and Pappas, G. J., Trade-offs between driving nodes and time-to-control in complex networks, Sci. Rep. 7 [2017] 39978. Crossref, Web of ScienceGoogle Scholar
    • 30. Pequito, S., Ramos, G., Kar, S., Aguiar, A. P. and Ramos, J., The robust minimal controllability problem, Automatica 82 [2017] 261–268. Crossref, Web of ScienceGoogle Scholar
    • 31. Ramos, G., Pequito, S. and Caleiro, C., The robust minimal controllability problem for switched linear continuous-time systems, in 2018 Annual American Control Conf. (ACC) (IEEE, 2018), pp. 210–215. CrossrefGoogle Scholar
    • 32. Rudolf, H., Applications of Fractional Calculus in Physics (World Scientific, 2000). Google Scholar
    • 33. Sabatier, J., Agrawal, O. P. and Machado, J. T., Advances in Fractional Calculus, Vol. 4 (Springer, 2007). CrossrefGoogle Scholar
    • 34. Siljak, D., Large-Scale Dynamic Systems: Stability and Structure, Dover Civil and Mechanical Engineering Series (Dover Publications, 2007). Google Scholar
    • 35. Skogestad, S., Control structure design for complete chemical plants, Comput. Chem. Eng. 28 [2004] 219–234. Crossref, Web of ScienceGoogle Scholar
    • 36. Thurner, S., Windischberger, C., Moser, E., Walla, P. and Barth, M., Scaling laws and persistence in human brain activity, Phys. A. Stat. Mech. Appl. 326 [2003] 511–521. Crossref, Web of ScienceGoogle Scholar
    • 37. Turcott, R. G. and Teich, M. C., Fractal character of the electrocardiogram: Distinguishing heart-failure and normal patients, Ann. Biomed. Eng. 24 [1996] 269–293. Crossref, Web of ScienceGoogle Scholar
    • 38. Tzoumas, V., Xue, Y., Pequito, S., Bogdan, P. and Pappas, G. J., Selecting sensors in biological fractional-order systems, IEEE Trans. Control Netw. Syst. 5 [2018] 709–721. Crossref, Web of ScienceGoogle Scholar
    • 39. Werner, G., Fractals in the nervous system: Conceptual implications for theoretical neuroscience, Front. Physiol. 1 [2010] 15. Web of ScienceGoogle Scholar
    • 40. Wonham, W. M., Linear multivariable control, in Optimal Control Theory and its Applications (Springer, 1974), pp. 392–424. CrossrefGoogle Scholar
    • 41. Xue, Y., Pequito, S., Coelho, J. R., Bogdan, P. and Pappas, G. J., Minimum number of sensors to ensure observability of physiological systems: A case study, in 2016 54th Annual Allerton Conf. Communication, Control, and Computing (Allerton) (IEEE, 2016), pp. 1181–1188. CrossrefGoogle Scholar
    • 42. Yang, X.-J., Machado, J. T., Cattani, C. and Gao, F., On a fractal lc-electric circuit modeled by local fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 47 [2017] 200–206. Crossref, Web of ScienceGoogle Scholar
    • 43. Zhou, T., Minimal inputs/outputs for a networked system, IEEE Control Syst. Lett. 1 [2017] 298–303. CrossrefGoogle Scholar
    • 44. Zhou, T., Minimal inputs/outputs for subsystems in a networked system, Autom. 94 [2018] 161–169. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!