World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ACCELERATING THE EMERGENCE OF ORDER IN SWARMING SYSTEMS

    Our ability to understand and control the emergence of order in swarming systems is a fundamental challenge in contemporary science. The standard Vicsek model (SVM) — a minimal model for swarming systems of self-propelled particles — describes a large population of agents reaching global alignment without the need of central control. Yet, the emergence of order in this model takes time and is not robust to noise. In many real-world scenarios, we need a decentralized protocol to guide a swarming system (e.g., unmanned vehicles or nanorobots) to reach an ordered state in a prompt and noise-robust manner. Here, we find that introducing a simple adaptive rule based on the heading differences of neighboring particles in the Vicsek model can effectively speed up their global alignment, mitigate the disturbance of noise to alignment, and maintain a robust alignment under predation. This simple adaptive model of swarming systems could offer new insights in understanding the prompt and flexible formation of animals and help us design better protocols to achieve fast and robust alignment for multi-agent systems.

    References

    • 1. Aldana, M., Larralde, H. and Vázquez, B., On the emergence of collective order in swarming systems: A recent debate, Int. J. Mod. Phys. B 23 [2009] 3661–3685. Link, ISIGoogle Scholar
    • 2. Angelani, L., Collective predation and escape strategies, Phys. Rev. Lett. 109 [2012] 118104. Crossref, ISIGoogle Scholar
    • 3. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F. and Viale, M., Scale-free correlations in starling flocks, Proc. Nat. Acad. Sci. 107 [2010] 11865–11870. Crossref, ISIGoogle Scholar
    • 4. Cavalcanti, A., Shirinzadeh, B., Freitas Jr, R. A. and Hogg, T., Nanorobot architecture for medical target identification, Nanotechnology 19 [2007] 015103. Crossref, ISIGoogle Scholar
    • 5. Chaté, H., Ginelli, F., Grégoire, G., Peruani, F. and Raynaud, F., Modeling collective motion: Variations on the vicsek model, Eur. Phys. J. B 64 [2008] 451–456. Crossref, ISIGoogle Scholar
    • 6. Chaté, H., Ginelli, F., Grégoire, G. and Raynaud, F., Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E 77 [2008] 046113. Crossref, ISIGoogle Scholar
    • 7. Choi, K., Yoo, S. J., Park, J. B. and Choi, Y. H., Adaptive formation control in absence of leader’s velocity information, Control Theory Appl., IET 4 [2010] 521–528. CrossrefGoogle Scholar
    • 8. Clark, C. W. and Mangel, M., Foraging and flocking strategies: Information in an uncertain environment, Am. Nat. 123 [1984] 626–641. Crossref, ISIGoogle Scholar
    • 9. Couzin, I. D., Krause, J., Franks, N. R. and Levin, S. A., Effective leadership and decision-making in animal groups on the move, Nature 433 [2005] 513–516. Crossref, ISIGoogle Scholar
    • 10. Couzin, I. D., Krause, J., James, R., Ruxton, G. D. and Franks, N. R., Collective memory and spatial sorting in animal groups, J. Theor. Biol. 218 [2002] 1–11. Crossref, ISIGoogle Scholar
    • 11. Czirók, A., Ben-Jacob, E., Cohen, I. and Vicsek, T., Formation of complex bacterial colonies via self-generated vortices, Phys. Rev. E 54 [1996] 1791. Crossref, ISIGoogle Scholar
    • 12. DeLellis, P., di Bernardo, M. and Turci, L. F. R., Fully adaptive pinning control of complex networks, in Proc. 2010 IEEE Int. Symp. Circuits and Systems (IEEE, 2010), pp. 685–688. CrossrefGoogle Scholar
    • 13. Douglas, S. M., Bachelet, I. and Church, G. M., A logic-gated nanorobot for targeted transport of molecular payloads, Science 335 [2012] 831–834. Crossref, ISIGoogle Scholar
    • 14. Dyer, J. R., Ioannou, C. C., Morrell, L. J., Croft, D. P., Couzin, I. D., Waters, D. A. and Krause, J., Consensus decision making in human crowds, Anim. Behav. 75 [2008] 461–470. Crossref, ISIGoogle Scholar
    • 15. Elbaz, J. and Willner, I., Dna origami: Nanorobots grab cellular control, Nat. Mater. 11 [2012] 276–277. Crossref, ISIGoogle Scholar
    • 16. Gallup, A. C., Hale, J. J., Sumpter, D. J., Garnier, S., Kacelnik, A., Krebs, J. R. and Couzin, I. D., Visual attention and the acquisition of information in human crowds, Proc. Nat. Acad. Sci. 109 [2012] 7245–7250. Crossref, ISIGoogle Scholar
    • 17. Gao, J., Chen, Z., Cai, Y. and Xu, X., Enhancing the convergence efficiency of a self-propelled agent system via a weighted model, Phys. Rev. E 81 [2010] 041918. Crossref, ISIGoogle Scholar
    • 18. Grossman, D., Aranson, I. and Jacob, E. B., Emergence of agent swarm migration and vortex formation through inelastic collisions, New J. Phys. 10 [2008] 023036. Crossref, ISIGoogle Scholar
    • 19. Hubbard, S., Babak, P., Sigurdsson, S. T. and Magnússon, K. G., A model of the formation of fish schools and migrations of fish, Ecol. Model. 174 [2004] 359–374. Crossref, ISIGoogle Scholar
    • 20. Ioannou, C., Guttal, V. and Couzin, I., Predatory fish select for coordinated collective motion in virtual prey, Science 337 [2012] 1212–1215. Crossref, ISIGoogle Scholar
    • 21. Kamimura, A. and Ohira, T., Group chase and escape, New J. Phys. 12 [2010] 053013. Crossref, ISIGoogle Scholar
    • 22. Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., and Campbell, A. T., A survey of mobile phone sensing, IEEE Commun. Magaz. 48 (2010) 140–150. Google Scholar
    • 23. Lee, S.-H., Pak, H. and Chon, T.-S., Dynamics of prey-flock escaping behavior in response to predator’s attack, J. Theor. Biol. 240 [2006] 250–259. Crossref, ISIGoogle Scholar
    • 24. Li, W. and Wang, X., Adaptive velocity strategy for swarm aggregation, Phys. Rev. E 75 [2007] 021917. Crossref, ISIGoogle Scholar
    • 25. Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F. and Domenici, P., Fish swimming in schools save energy regardless of their spatial position, Behav. Ecol. Sociobiol. 69 [2015] 219–226. Crossref, ISIGoogle Scholar
    • 26. Morin, A., Caussin, J.-B., Eloy, C., and Bartolo, D., Collective motion with anticipation: Flocking, spinning, and swarming, Phys. Rev. E 91 [2015] 012134. Crossref, ISIGoogle Scholar
    • 27. Nagai, K. H., Sumino, Y., Montagne, R., Aranson, I. S. and Chaté, H., Collective motion of self-propelled particles with memory, Phys. Rev. Lett. 114 [2015] 168001. Crossref, ISIGoogle Scholar
    • 28. Nagy, M., Ákos, Z., Biro, D. and Vicsek, T., Hierarchical group dynamics in pigeon flocks, Nature 464 [2010] 890–893. Crossref, ISIGoogle Scholar
    • 29. Nagy, M., Vásárhelyi, G., Pettit, B., Roberts-Mariani, I., Vicsek, T. and Biro, D., Context-dependent hierarchies in pigeons, Proc. Nat. Acad. Sci. 110 [2013] 13049–13054. Crossref, ISIGoogle Scholar
    • 30. Ni, R., Puckett, J. G., Dufresne, E. R. and Ouellette, N. T., Intrinsic fluctuations and driven response of insect swarms, Phys. Rev. Lett. 115 [2015] 118104. Crossref, ISIGoogle Scholar
    • 31. Oh, K.-K., Park, M.-C. and Ahn, H.-S., A survey of multi-agent formation control, Automatica 53 [2015] 424–440. Crossref, ISIGoogle Scholar
    • 32. Okubo, A., Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. Biophys. 22 [1986] 1–94. CrossrefGoogle Scholar
    • 33. Olfati-Saber, R., Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 [2006] 401–420. Crossref, ISIGoogle Scholar
    • 34. Oshanin, G., Vasilyev, O., Krapivsky, P. and Klafter, J., Survival of an evasive prey, Proc. Nat. Acad. Sci. 106 [2009] 13696–13701. Crossref, ISIGoogle Scholar
    • 35. Parrish, J. K., Viscido, S. V. and Grünbaum, D., Self-organized fish schools: An examination of emergent properties, Biol. Bull. 202 [2002] 296–305. Crossref, ISIGoogle Scholar
    • 36. Peng, L., Zhao, Y., Tian, B., Zhang, J., Wang, B.-H., Zhang, H.-T. and Zhou, T., Consensus of self-driven agents with avoidance of collisions, Phys. Rev. E 79 [2009] 026113. Crossref, ISIGoogle Scholar
    • 37. Reynolds, C. W., Flocks, herds and schools: A distributed behavioral model, in ACM Siggraph Computer Graphics, Vol. 21(4) (ACM, 1987), pp. 25–34. CrossrefGoogle Scholar
    • 38. Ribichini, G. and Frazzoli, E., Efficient coordination of multiple-aircraft systems, in Proc. 42nd IEEE Conf. Decision and Control, 2003, Vol. 1 (IEEE, 2003), pp. 1035–1040. CrossrefGoogle Scholar
    • 39. Roberts, G., Why individual vigilance declines as group size increases, Anim. Behav. 51 [1996] 1077–1086. Crossref, ISIGoogle Scholar
    • 40. Rørth, P., Collective guidance of collective cell migration, Trends Cell Biol. 17 [2007] 575–579. Crossref, ISIGoogle Scholar
    • 41. Siegfried, W. R. and Underhill, L., Flocking as an anti-predator strategy in doves, Anim. Behav. 23 [1975] 504–508. Crossref, ISIGoogle Scholar
    • 42. Strömbom, D., Collective motion from local attraction, J. Theor. Biol. 283 [2011] 145–151. Crossref, ISIGoogle Scholar
    • 43. Van den Berg, J., Lin, M. and Manocha, D., Reciprocal velocity obstacles for real-time multi-agent navigation, in IEEE Int. Conf. Robotics and Automation, 2008. ICRA 2008 (IEEE, 2008), pp. 1928–1935. CrossrefGoogle Scholar
    • 44. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 [1995] 1226. Crossref, ISIGoogle Scholar
    • 45. Vicsek, T. and Zafeiris, A., Collective motion, Phys. Rep. 517 [2012] 71–140. Crossref, ISIGoogle Scholar
    • 46. Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., Somorjai, G., Nepusz, T. and Vicsek, T., Flocking algorithm for autonomous flying robots, Bioinspir. Biomimetics 9 [2014] 025012. Crossref, ISIGoogle Scholar
    • 47. Wang, L. and Chen, G., Synchronization of multi-agent systems with metric-topological interactions, Chaos Interdiscip. J. Nonlinear Sci. 26 [2016] 094809. Crossref, ISIGoogle Scholar
    • 48. Yang, W., Cao, L., Wang, X. and Li, X., Consensus in a heterogeneous influence network, Phys. Rev. E 74 [2006] 037101. Crossref, ISIGoogle Scholar
    • 49. Zhang, J., Zhao, Y., Tian, B., Peng, L., Zhang, H.-T., Wang, B.-H. and Zhou, T., Accelerating consensus of self-driven swarm via adaptive speed, Phys. A Statist. Mech. Appl. 388 [2009] 1237–1242. Crossref, ISIGoogle Scholar
    • 50. Zhou, J., Lu, J.-A. and Lü, J., Pinning adaptive synchronization of a general complex dynamical network, Automatica 44 [2008] 996–1003. Crossref, ISIGoogle Scholar
    Published: 26 December 2019
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!