World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

AN ANALYTICAL SCHEME FOR THE ANALYSIS OF MULTI-HUMP SOLITONS

    https://doi.org/10.1142/S0219525918500273Cited by:3 (Source: Crossref)

    An analytical framework for the analysis of multi-hump solitons is proposed in this paper. Multi-hump solitons are defined by imposing special symmetry conditions on the classical soliton expression. Such soliton solutions have a wide range of potential applications in the field of optical communications. The proposed algebras of soliton solutions enable a new look at the propagation dynamics of complex nonlinear wave phenomena. The efficiency of the presented analytical scheme is demonstrated using a system of Riccati differential equations with diffusive and multiplicative coupling.

    References

    • 1. Agrawal, G. P., Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2007). Google Scholar
    • 2. Akhmediev, N. and Ankiewicz, A., Multi-soliton complexes, Chaos 10 [2000] 600–612. Crossref, Web of ScienceGoogle Scholar
    • 3. Akhmediev, N. N. and Ankiewicz, A., Dissipative Solitons: From Optics to Biology and Medicine (Springer-Verlag, Berlin, 2010). Google Scholar
    • 4. Chen, S., Shi, D. and Yi, L., Timing jitter of femtosecond solitons in single-mode optical fibers: A perturbation model, Phys. Rev. E 69 [2004] 046602. Crossref, Web of ScienceGoogle Scholar
    • 5. Dauxois, T. and Peyrard, M., Physics of Solitons (Cambridge University Press, Cambridge, 2006). Google Scholar
    • 6. Han, D. D., Liu, X. M., Cui, Y. D., Wang, G. X., Zeng, C. and Yun, L., Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser, Opt. Lett. 39 [2014] 1565–1568. Crossref, Web of ScienceGoogle Scholar
    • 7. Hasegawa, A. and Kodama, Y., Solitons in Optical Communications (Clarendon Press, Oxford, 1995). CrossrefGoogle Scholar
    • 8. Herr, T., Brasch, V., Jost, J. D., Wang, C. Y., Kondratiev, N. M., Gorodetsky, M. L. and Kippenberg, T. J., Temporal solitons in optical microresonators, Nature Photonics 8 [2014] 145–152. Crossref, Web of ScienceGoogle Scholar
    • 9. Kartashov, Y. V., Malomed, B. A., Vysloukh, V. A. and Torner, L., Vector solitons in nonlinear lattices, Opt. Lett. 34 [2009] 3625–3627. Crossref, Web of ScienceGoogle Scholar
    • 10. Knill, E., Laflamme, R. and Milburn, G. J., A scheme for efficient quantum computation with linear optics, Nature 409 [2001] 46–52. Crossref, Web of ScienceGoogle Scholar
    • 11. Kudryashov, N. A., Meromorphic solutions of nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. Simul. 15 [2010] 2778–2790. Crossref, Web of ScienceGoogle Scholar
    • 12. Liu, L., Tian, B., Chai, H.-P. and Yuan, Y.-Q., Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber, Phys. Rev. E 95 [2017] 032202. Crossref, Web of ScienceGoogle Scholar
    • 13. Marcinkevicius, R., Navickas, Z., Ragulskis, M. and Telksnys, T., Solitary solutions to a relativistic two-body problem, Astrophys. Space Sci. 361 [2016] 201. Crossref, Web of ScienceGoogle Scholar
    • 14. Mollenauer, L. F., Lichtman, E., Harvey, G. T., Neubelt, M. J. and Nyman, B. M., Demonstration of error-free soliton transmission over more than 15,000km at 5 Gbit/s, single-channel, and over 11,000km at 10 Gbit/s in a two-channel WDM, in Digest of Conference on Optical Fiber Communication (San Jose, CA, USA, 1992), p. PD10. https://doi.org/https://doi.org/10.1364/OFC.1992.PD10 Google Scholar
    • 15. Navickas, Z. and Bikulciene, L., Expressions of solutions of ordinary differential equations by standard functions, Math. Mod. Anal. 11 [2006] 399–412. CrossrefGoogle Scholar
    • 16. Navickas, Z., Bikulciene, L., Rahula, M. and Ragulskis, M., Algebraic operator method for the construction of solitary solutions to nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul. 18 [2013] 1374–1389. Crossref, Web of ScienceGoogle Scholar
    • 17. Navickas, Z., Marcinkevicius, R., Telksnys, T. and Ragulskis, M., Existence of second order solitary solutions to riccati differential equations coupled with a multiplicative term, IMA J. Appl. Math. 81 [2016] 1163–1190. Crossref, Web of ScienceGoogle Scholar
    • 18. Navickas, Z., Ragulskis, M. and Telksnys, T., Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput. 283 [2016] 333–338. Web of ScienceGoogle Scholar
    • 19. Porsezian, K. and Kuriakose, V., Optical Solitons: Theoretical and Experimental Challenges (Springer-Verlag, Berlin, 2003). CrossrefGoogle Scholar
    • 20. Scott, A. ed., Encyclopedia of Nonlinear Science (Routledge, New York, 2004). Google Scholar
    • 21. Steiglitz, K., Making beam splitters with dark soliton collisions, Phys. Rev. A 82 [2010] 043831. Crossref, Web of ScienceGoogle Scholar
    • 22. Steiglitz, K., Soliton-guided phase shifter and beam splitter, Phys. Rev. A 81 [2010] 033835. Crossref, Web of ScienceGoogle Scholar
    • 23. Steiglitz, K. and Rand, D., Photon trapping and transfer with solitons, Phys. Rev. A 79 [2008] 021802(R). Crossref, Web of ScienceGoogle Scholar
    • 24. Sun, W.-R., Tian, B., Wang, Y.-F. and Zhen, H.-L., Dark single- and double-hump vector solitons of the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode fibers, Opt. Commun. 335 [2015] 237–244. Crossref, Web of ScienceGoogle Scholar
    • 25. Yang, J.-W., Gao, Y.-T., Su, C.-Q., Zuo, D.-W. and Feng, Y.-J., Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber, Commun. Nonlinear Sci. Numer. Simulat. 42 [2017] 477–490. Crossref, Web of ScienceGoogle Scholar