World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ROLE OF NEUTRAL EVOLUTION IN WORD TURNOVER DURING CENTURIES OF ENGLISH WORD POPULARITY

    https://doi.org/10.1142/S0219525917500126Cited by:12 (Source: Crossref)

    Here, we test Neutral models against the evolution of English word frequency and vocabulary at the corpus scale, as recorded in annual word frequencies from three centuries of English language books. Against these data, we test both static and dynamic predictions of two neutral models, including the relation between corpus size and vocabulary size, frequency distributions, and turnover within those frequency distributions. Although a commonly used Neutral model fails to replicate all these emergent properties at once, we find that modified two-stage Neutral model does replicate the static and dynamic properties of the corpus data. This two-stage model is meant to represent a relatively small corpus of English books, analogous to a ‘canon’, sampled by an exponentially increasing corpus of books among the wider population of authors. More broadly, this model — a smaller neutral model within a larger neutral model — could represent more broadly those situations where mass attention is focused on a small subset of the cultural variants.

    References

    • 1. Acerbi, A., Lampos, V., Garnett, P. and Bentley, R. A. , The expression of emotions in 20th century books, PLoS One 8 (3) (2013) e59030. Crossref, ISIGoogle Scholar
    • 2. Acerbi, A. and Bentley, R. A. , Biases in cultural transmission shape the turnover of popular traits, Evol. Hum. Behav. 35 (2014) 228–236. Crossref, ISIGoogle Scholar
    • 3. Altmann, E. G., Pierrehumbert, J. B. and Motter, A. E. , Niche as a determinant of word fate in online groups, PLoS One 6 (5) (2011) e19009. Crossref, ISIGoogle Scholar
    • 4. Batty, M. , Rank clocks, Nature 444 (2006) 592–596. Crossref, ISIGoogle Scholar
    • 5. Barucca, P., Rocchi, J., Marinari, E., Parisi, G. and Ricci-Tersenghi, F. , Cross-correlations of American baby names, Proc. Nat. Acad. Sci. 112 (2015) 7943–7947. Crossref, ISIGoogle Scholar
    • 6. Bentley, R. A., Acerbi, A., Lampos, V. and Ormerod, P. , Books average previous decade of economic misery, PLoS One 9 (1) (2014) e83147. Crossref, ISIGoogle Scholar
    • 7. Bentley, R. A., Caiado, C. and Ormerod, P. , Effects of memory on spatial heterogeneity in neutrally transmitted culture, Evol. Hum. Behav. 35 (2014) 257–263. Crossref, ISIGoogle Scholar
    • 8. Bentley, R. A., Garnett, P., O’Brien, M. J. and Brock, W. A. , Word diffusion and climate science, PLoS One 7 (11) (2012) e47966. Crossref, ISIGoogle Scholar
    • 9. Bentley, R. A., Ormerod, P. and Batty, M. , Evolving social influence in large populations, Behav. Ecol. Sociobiol. 65 (2011) 537–546. Crossref, ISIGoogle Scholar
    • 10. Bentley, R. A., Shennan, S. J. and Ormerod, P. , Population-level neutral model already explains linguistic patterns, Proc. R. Soc. B 278 (2011) 1770–1772. Crossref, ISIGoogle Scholar
    • 11. Bentley, R. A., Hahn, M. W. and Shennan, S. J. , Random drift and culture change, Proc. R. Soc. B 271 (2004) 1443–1450. Crossref, ISIGoogle Scholar
    • 12. Bentley, R. A., Lipo, C. P., Herzog, H. A. and Hahn, M. W. , Regular rates of popular culture change reflect random copying, Evol. Hum. Behav. 28 (2007) 151–158. Crossref, ISIGoogle Scholar
    • 13. Bentley, R. A. , Random drift versus selection in academic vocabulary, PLoS One 3 (8) (2008) e3057. Crossref, ISIGoogle Scholar
    • 14. Christiansen, M. H. and Chater, N. , Language as shaped by the brain, Behav. Brain Sci. 31 (2008) 489–509. Crossref, ISIGoogle Scholar
    • 15. Clauset, A., Shalizi, C. R. and Newman, M. E. J. , Power-law distributions in empirical data, SIAM Rev. 51 (2007) 661–703. Crossref, ISIGoogle Scholar
    • 16. Cuskley, C. F., Pugliese, M., Castellano, C., Colaiori, F., Loreto, V. and Tria, F. , Internal and external dynamics in language: Evidence from verb regularity in a historical corpus of English, PLoS One 9 (8) (2014) e102882. Crossref, ISIGoogle Scholar
    • 17. Eriksson, K., Jansson, F. and Sjöstrand, J. , Bentley’s conjecture on popularity toplist turnover under random copying, Ramanujan J. 23 (2010) 371–396. Crossref, ISIGoogle Scholar
    • 18. Evans, T. S. , Exact solutions for network rewiring models, Eur. Phys. J. B 56 (2007) 65–69. Crossref, ISIGoogle Scholar
    • 19. Evans, T. S. and Giometto, A., Turnover rate of popularity charts in neutral models, arXiv: 11054044v1. Google Scholar
    • 20. Ferrer i Cancho, R., Riordan, O. and Bollobás, B. , The consequences of Zipf’s law for syntax and symbolic reference, Proc. R. Soc. B 272 (2005) 561–565. Crossref, ISIGoogle Scholar
    • 21. Gabaix, X. , Power laws in economics and finance, Ann. Rev. Econ. 1 (2009) 255–293. Crossref, ISIGoogle Scholar
    • 22. Gao, J., Hu, J., Mao, X. and Perc, M. , Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries, J. R. Soc. Interface 9 (2012) 1956–1964. Crossref, ISIGoogle Scholar
    • 23. Ghoshal, G. and Barabási, A.-L. , Ranking stability and super-stable nodes in complex networks, Nat. Commun. 2 (2011) 394. Crossref, ISIGoogle Scholar
    • 24. Gleeson, J. P., Cellai, D., Onnela, J.-P., Porter, M. A. and Reed-Tsochas, F. , A simple generative model of collective online behavior, Proc. Nat. Acad. Sci. 111 (2014) 10411–10415. Crossref, ISIGoogle Scholar
    • 25. Google Books, Available at: https://booksgooglecom/ngrams/info. Google Scholar
    • 26. Hahn, M. W. and Bentley, R. A. , Drift as a mechanism for cultural change: An example from baby names, Proc. R. Soc. B 270 (2003) S1–S4. Crossref, ISIGoogle Scholar
    • 27. Hruschka, D. J., Christiansen, M. H., Blythe, R. A., Croft, W., Heggarty, P., Mufwene, S. S., Pierrehumbert, J. B. and Poplack, S. , Building social cognitive models of language change, Trends Cogn. Sci. 13 (2009) 464–469. Crossref, ISIGoogle Scholar
    • 28. Hughes, J. M., Foti, N. J., Krakauer, D. C. and Rockmore, D. N. , Quantitative patterns of stylistic influence in the evolution of literature, Proc. Nat. Acad. Sci. 109 (2012) 7682–7686. Crossref, ISIGoogle Scholar
    • 29. Kandler, A. and Shennan, S. , A non-equilibrium neutral model for analysing cultural change, J. Theor. Biol. 330 (2013) 18–25. Crossref, ISIGoogle Scholar
    • 30. Li, W. , Random texts exhibit Zipf’s-law-like word frequency distribution, IEEE Trans. Inf. Theory 38 (1992) 1842–1845. Crossref, ISIGoogle Scholar
    • 31. Lieberman, E., Michel, J.-P., Jackson, J., Tang, T. and Nowak, M. A. , Quantifying the evolutionary dynamics of language, Nature 449 (2007) 713–716. Crossref, ISIGoogle Scholar
    • 32. Lin, Y., Michel, J. B., Aiden, E. L., Orwant, J., Brockman, W. and Petrov, S. , Syntactic annotations for the google books ngram corpus, in Proc. ACL 2012 System Demonstrations, (Association for Computational Linguistics, 2012), pp. 169–174. Google Scholar
    • 33. Lü, L., Zhang, Z.-K. and Zhou, T. , Zipf’s Law leads to Heaps’ Law: Analyzing their relation in finite-size systems, PLoS One 5 (12) (2010) e14139. Crossref, ISIGoogle Scholar
    • 34. Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A. and Aiden, E. L. , Quantitative analysis of culture using millions of digitized books, Science 331 (2011) 176–182. Crossref, ISIGoogle Scholar
    • 35. Neiman, F. D. , Stylistic variation in evolutionary perspective, Am. Antiq. 60 (1995) 7–36. Crossref, ISIGoogle Scholar
    • 36. Pagel, M., Atkinson, Q. D. and Meade, A. , Frequency of word-use predicts rates of lexical evolution throughout Indo-European history, Nature 449 (2007) 717–721. Crossref, ISIGoogle Scholar
    • 37. Pan, R. K., Petersen, A. M., Pammolli, F. and Fortunato, S., The memory of science: Inflation, myopia, and the knowledge network, arXiv:160705606v1. Google Scholar
    • 38. Perc, M. , Evolution of the most common English words and phrases over the centuries, J. R. Soc. Interface 9 (2012) 3323–3328. Crossref, ISIGoogle Scholar
    • 39. Perc, M. , The Matthew effect in empirical data, J. R. Soc. Interface 11 (2014) 20140378. Crossref, ISIGoogle Scholar
    • 40. Petersen, A. M., Tenenbaum, J., Havlin, S., Stanley, H. E. and Perc, M. , Languages cool as they expand: Allometric scaling and the decreasing need for new words, Sci. Rep. 2 (2012) 943. Crossref, ISIGoogle Scholar
    • 41. Petersen, A. M., Tenenbaum, J., Havlin, S. and Stanley, H. E. , Statistical laws governing fluctuations in word use from Word Birth to Word Death, Sci. Rep. 2 (2012) 313. Crossref, ISIGoogle Scholar
    • 42. Piantadosi, S. T., Tily, H. and Gibson, E. , Word lengths are optimized for efficient communication, Proc. Nat. Acad. Sci. 108 (2011) 3526–3529. Crossref, ISIGoogle Scholar
    • 43. Reali, F. and Griffiths, T. L. , Words as alleles: Connecting language evolution with Bayesian learners to models of genetic drift, Proc. R. Soc. B 277 (2010) 429–436. Crossref, ISIGoogle Scholar
    • 44. Sigurd, B., Eeg-Olofsson, M. and van de Weijer, J. , Word length, sentence length and frequency–Zipf revisited, Stud. Linguist. 58 (2004) 37–52. Crossref, ISIGoogle Scholar
    • 45. Strimling, P., Sjöstrand, J., Eriksson, K. and Enquist, M. , Accumulation of cultural traits, Theor. Popul. Biol. 76 (2009) 77–83. Crossref, ISIGoogle Scholar
    • 46. Williams, J. R., Lessard, P. R., Desu, S., Clark, E., Bagrow, J. P., Danforth, C. M. and Dodds, P. S. , Zipf’s law holds for phrases, not words, Sci. Rep. 5 (2015) 12209. Crossref, ISIGoogle Scholar
    • 47. Zipf, G. K. , Human Behavior and the Principle of Least Effort (Addison Wesley, Cambridge, MA, 1949). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!