DIFFERENCES BETWEEN CONTRALATERAL BONES OF THE HUMAN LOWER LIMBS: A MULTISCALE INVESTIGATION
Abstract
This study addressed side asymmetry between human lower limb long bones.
A multiscale approach was taken to investigate differences between contralateral femurs, tibias and fibulas, at body-level (total-body CT-scans, anatomical dissection), organ-level (volume and moments of areas; structural stiffness and strain distribution in bending and torsions) and tissue-level (mineral density, elastic modulus, hardness).
Because of the large amount of measurements taken, the study was limited to two donors. However, high statistical power within the same donor was achieved thanks to a large number of highly-repeatable measurements. Muscle cross-sections suggested that both donors were right-legged. The right bones had higher structural stiffness (up to +115%, statistically significant, except for the tibia). The right bones also experienced generally lower strain than the contralateral ones (up to -25%, statistically significant). The right bones had larger volume (up to +16%) and moments of area (up to +116%, statistically significant in most cases) than the left ones. Difference in tissue density between contralateral bones (< 7%) was not statistically significant in most cases. Also the differences found in elastic modulus of the femur cortical tissue (2–5%) were not statistically significant. Similarly, tissue hardness in the right bones was only marginally higher than in the contralateral ones (+1% to +4%, not statistically significant). Therefore, it seems that structural differences between contralateral bones associated with laterality are mainly explained by differences in bone quantity (volume) and organization (area moments). Bone tissue quality (density, hardness) seems to give a marginal contribution to structural side asymmetry.
References
- J. Biomech. Eng. 118, 575 (1996), DOI: 10.1115/1.2796045. Crossref, Web of Science, Google Scholar
- J. Biomech. 33(4), 499 (2000), DOI: 10.1016/S0021-9290(99)00202-X. Crossref, Web of Science, Google Scholar
- J. Biomech. 26(3), 251 (1993), DOI: 10.1016/0021-9290(93)90363-J. Crossref, Web of Science, Google Scholar
-
S. Coren , The Left-Hander Syndrome. The Causes and Consequences of Left-Handedness ( The Free Press — Maxwell Macmillian , Toronto , 1992 ) . Google Scholar -
Y. C. Fung , Biomechanics: Motion, Flow, Stress, and Growth ( Springer , New York , 1990 ) . Crossref, Google Scholar - Gait Posture 12(1), 34 (2000), DOI: 10.1016/S0966-6362(00)00070-9. Crossref, Web of Science, Google Scholar
- Forensic. Sci. Int. (2010). Google Scholar
- J. Forensic. Leg. Med. 15(3), 177 (2008), DOI: 10.1016/j.jflm.2007.05.009. Crossref, Web of Science, Google Scholar
- J. Orthop. Surg. Res. 3, 11 (2008), DOI: 10.1186/1749-799X-3-11. Crossref, Web of Science, Google Scholar
- Pak. J. Biol. Sci. 11(21), 2509 (2008). Crossref, Google Scholar
- J. Bone. Miner. Res. 19(3), 379 (2004), DOI: 10.1359/JBMR.0301247. Crossref, Web of Science, Google Scholar
- Calcif. Tissue. Int. 87(3), 203 (2010), DOI: 10.1007/s00223-010-9388-6. Crossref, Web of Science, Google Scholar
- Proc. Inst. Mech. Eng. H. 223(3), 273 (2009), DOI: 10.1243/09544119JEIM497. Crossref, Web of Science, Google Scholar
- J. Biomech. 19, 443 (1986), DOI: 10.1016/0021-9290(86)90021-7. Crossref, Web of Science, Google Scholar
- J. Biomech. 13, 667 (1980), DOI: 10.1016/0021-9290(80)90353-X. Crossref, Web of Science, Google Scholar
- J. Biomech. 43(5), 826 (2010), DOI: 10.1016/j.jbiomech.2009.11.022. Crossref, Web of Science, Google Scholar
- Calcif. Tissue. Int. 61(3), 189 (1997), DOI: 10.1007/s002239900321. Crossref, Web of Science, Google Scholar
- Radiology 167(1), 151 (1988). Crossref, Web of Science, Google Scholar
- Bone 42(3), 476 (2008), DOI: 10.1016/j.bone.2007.12.001. Crossref, Web of Science, Google Scholar
- Bone 22(1), 57 (1998), DOI: 10.1016/S8756-3282(97)00228-7. Crossref, Web of Science, Google Scholar
- J. Vibroeng. 11(3), (2009). Google Scholar
- J. Bone. Joint. Surg. Am. 48(2), 273 (1966). Crossref, Web of Science, Google Scholar
- Acta. Anat. (Basel) 103(3), 358 (1979), DOI: 10.1159/000145035. Crossref, Google Scholar
- Proc. Inst. Mech. Eng. H. 223(7), 913 (2009), DOI: 10.1243/09544119JEIM634. Crossref, Web of Science, Google Scholar
- Jepsen KJ, Functional interactions among morphologic and tissue quality traits define bone quality, Clin Orthop Relat Res, e-pub ahead of print, 2010 . Google Scholar
- J. Bone. Miner. Res. 23(2), 236 (2008), DOI: 10.1359/jbmr.071014. Crossref, Web of Science, Google Scholar
-
D. Noble , The Music of Life: Biology Beyond the Genome ( Oxford University Press , Oxford, UK , 2006 ) . Crossref, Google Scholar - Philos. Transact. A. Math. Phys. Eng. Sci. 366(1879), 3319 (2008), DOI: 10.1098/rsta.2008.0077. Crossref, Web of Science, Google Scholar
- Clin. Biomech. (Bristol, Avon) 23(7), 845 (2008), DOI: 10.1016/j.clinbiomech.2008.01.009. Crossref, Web of Science, Google Scholar
- Clin. Biomech. (Bristol, Avon) 23(10), 1294 (2008). Crossref, Web of Science, Google Scholar
- Crit. Rev. Biomed. Eng. 25, 409 (1997), DOI: 10.1615/CritRevBiomedEng.v25.i4-5.30. Crossref, Web of Science, Google Scholar
- Am. J. Phys. Anthropol. 60, 359 (1983), DOI: 10.1002/ajpa.1330600308. Crossref, Web of Science, Google Scholar
- J. Biomech. 41(16), 3384 (2008), DOI: 10.1016/j.jbiomech.2008.09.009. Crossref, Web of Science, Google Scholar
- Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease , ed.
V. R. Preedy ( Springer , New York , 2011 ) . Google Scholar , - Biom. Hum. Anthropol. 18, 101 (2000). Google Scholar
- J. Biomech. 39(13), 2457 (2006), DOI: 10.1016/j.jbiomech.2005.07.018. Crossref, Web of Science, Google Scholar
- Experimental Mechanics. Technology Transfer Between High Tech Engineering and Biomechanics , ed.
E. G. Little ( Elsevier Science Publisher B.V. , Amsterdam , 1992 ) . Google Scholar , - J. Biomech. 34(7), 859 (2001), DOI: 10.1016/S0021-9290(01)00040-9. Crossref, Web of Science, Google Scholar
- J. Biomech. 40(13), 2837 (2007), DOI: 10.1016/j.jbiomech.2007.03.015. Crossref, Web of Science, Google Scholar
- J. Biomech. 28(5), 617 (1995), DOI: 10.1016/0021-9290(94)00106-E. Crossref, Web of Science, Google Scholar
- J. Biomech. 32(10), 1013 (1999), DOI: 10.1016/S0021-9290(99)00099-8. Crossref, Web of Science, Google Scholar
- J. Biomech. 33(3), 279 (2000), DOI: 10.1016/S0021-9290(99)00186-4. Crossref, Web of Science, Google Scholar
- J. Biomech. 29(4), 525 (1996), DOI: 10.1016/0021-9290(95)00084-4. Crossref, Web of Science, Google Scholar
- J. Biomech. Eng. 130(3), 031016 (2008), DOI: 10.1115/1.2913335. Crossref, Web of Science, Google Scholar
- J. Biomech. 34(6), 773 (2001), DOI: 10.1016/S0021-9290(01)00015-X. Crossref, Web of Science, Google Scholar
- J. Musculoskelet. Neuronal. Interact. 11(1), 8 (2011). Web of Science, Google Scholar
- Med. Phys. 19(3), 583 (1992), DOI: 10.1118/1.596899. Crossref, Web of Science, Google Scholar
- J. Biomech. 41(11), 2483 (2008), DOI: 10.1016/j.jbiomech.2008.05.017. Crossref, Web of Science, Google Scholar
- Comput. Methods. Programs. Biomed. 102(3), 227 (2011), DOI: 10.1016/j.cmpb.2010.04.017. Crossref, Web of Science, Google Scholar
-
Y. C. Fung , Biomechanics — Mechanical Properties of Living Tissues ( Springer Verlag , New York , 1980 ) . Google Scholar - Bone 30(1), 207 (2002). Crossref, Web of Science, Google Scholar
- Osteoporos. Int. 20(3), 445 (2009), DOI: 10.1007/s00198-008-0675-2. Crossref, Web of Science, Google Scholar
- J. Biomech. 40(14), 3267 (2007). Crossref, Web of Science, Google Scholar
- J. Orthop. Res. 7(5), 754 (1989), DOI: 10.1002/jor.1100070518. Crossref, Web of Science, Google Scholar
-
C. Ohman , M. Baleani and M. Viceconti , The effect of specimen geometry on the mechanical behaviour of human cortical bone , IV International Congress on Computational Bioengineering , eds.M. Viceconti , L. Cristofolini and R. Stagni ( 2009 ) . Google Scholar -
G. Olivier , Pratique Anthropologique ( Vigot Freres Editeurs , Paris , 1960 ) . Google Scholar - Calcif. Tissue. Int. 57(3), 201 (1995), DOI: 10.1007/BF00310259. Crossref, Web of Science, Google Scholar
- Clin. Biomech. (Bristol, Avon) 23(2), 135 (2008), DOI: 10.1016/j.clinbiomech.2007.08.024. Crossref, Web of Science, Google Scholar
- Ortop. Traumatol. Rehabil. 3(3), 345 (2001). Google Scholar
- Osteoporos. Int. 17(12), 1772 (2006), DOI: 10.1007/s00198-006-0192-0. Crossref, Web of Science, Google Scholar
- Eur. J. Radiol. 60(2), 293 (2006). Crossref, Web of Science, Google Scholar
- Ann. Anat. 189(5), 515 (2007), DOI: 10.1016/j.aanat.2006.11.010. Crossref, Web of Science, Google Scholar
- J. Musculoskelet. Neuronal. Interact. 11(4), 306 (2011). Web of Science, Google Scholar
- J. Biomech. 35(2), 189 (2002), DOI: 10.1016/S0021-9290(01)00199-3. Crossref, Web of Science, Google Scholar