World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue: Selected Papers from Mechanics in Medicine and Biology 2006 – Research PapersNo Access

HIERARCHICAL ANALYSIS AND CLASSIFICATION OF ASYMPTOMATIC AND KNEE OSTEOARTHRITIS GAIT PATTERNS USING A WAVELET REPRESENTATION OF KINETIC DATA AND THE NEAREST NEIGHBOR CLASSIFIER

    https://doi.org/10.1142/S0219519408002474Cited by:8 (Source: Crossref)

    The purpose of this study is twofold: (1) to develop a classification method to distinguish between asymptomatic (AS) and knee osteoarthritis (OA) gait patterns using ground reaction force (GRF) measurements, and (2) to investigate OA severity within OA gait patterns. Features were first extracted from the GRF vectors to be used for classification. We investigated a two-level hierarchical classification and analysis method using the nearest neighbor rule. At the first level, the GRF data were classified into two classes: AS and OA. At the second level, the GRF data of OA patients were classified according to the pathology severity. The OA patients were grouped into two OA severity categories according to the Kellgren and Lawrence (KL) scale: KL 1 and KL 2 for one category, and KL 3 and KL 4 for the other. Experiments were conducted using data of 42 cases, 16 AS and 26 pathological. The method discriminated between AS and OA subjects with an accuracy of 38 of 42 cases, and assessed the severity correctly with an accuracy of 20 of 26 cases. These results demonstrated the validity of both, the feature and the classifier, for automatic classification of AS and knee OA gait patterns and for analysis of OA severity.

    References