World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

SM-vanishing conjugacy classes of finite groups

    https://doi.org/10.1142/S0219498825500471Cited by:1 (Source: Crossref)

    Let G be a finite group. In this paper, we say that gG is an SM-vanishing element of G, if there exists a strongly monolithic character χ of G such that χ(g)=0. The conjugacy class of an SM-vanishing element of G is called an SM-vanishing conjugacy class of G. Our purpose here is to prove that for determining some properties of the structure of the group G, it is enough to consider the same arithmetical conditions on the sizes of SM-vanishing conjugacy classes of G instead of certain arithmetical conditions on the sizes of vanishing conjugacy classes of G.

    Communicated by M. L. Lewis

    AMSC: 20C15

    References

    • 1. Y. G. Berkovich and E. M. Zhmud , Characters of Finite Groups Part 2 (American Mathematical Society, 1999). Google Scholar
    • 2. M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici , Character degree graphs that are complete graphs, Proc. Amer. Math. Soc. 135(3) (2007) 671–676. Crossref, Web of ScienceGoogle Scholar
    • 3. J. Brough , On vanishing criteria that control finite group structure, J. Algebra 458 (2016) 207–215. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Chillag and M. Herzog , On the length of the conjugacy classes of finite groups, J. Algebra 131 (1990) 110–125. Crossref, Web of ScienceGoogle Scholar
    • 5. J. Cossey and Y. Wang , Remarks on the length of conjugacy classes of finite groups, Comm. Algebra 27(9) (1999) 4347–4353. Crossref, Web of ScienceGoogle Scholar
    • 6. S. Dolfi, E. Pacifici and L. Sanus , Groups whose vanishing class sizes are not divisible by a given prime, Arch. Math. 94 (2010) 311–317. Crossref, Web of ScienceGoogle Scholar
    • 7. S. Dolfi, E. Pacifici, L. Sanus and P. Spiga , On the vanishing prime graph of solvable groups, J. Group Theory 13 (2010) 189–206. Crossref, Web of ScienceGoogle Scholar
    • 8. S. Dolfi, E. Pacifici, L. Sanus and P. Spiga , On the orders of zeros of irreducible characters, J. Algebra 321 (2009) 345–352. Crossref, Web of ScienceGoogle Scholar
    • 9. T. Erkoç, S. Bozkurt Güngör and J. M. Özkan , Strongly monolithic characters of finite groups, J. Algebra Appl. 22(8) (2023) 2350176. LinkGoogle Scholar
    • 10. M. J. Felipe, N. Grittini and V. Sotomayor , On zeros of irreducible characters lying in a normal subgroup, Ann. Mat. Pura Appl. 199 (2020) 1777–1787. Crossref, Web of ScienceGoogle Scholar
    • 11. A. Granville and K. Ono , Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348(1) (1996) 331–347. Crossref, Web of ScienceGoogle Scholar
    • 12. B. Huppert , Endliche Gruppen I (Springer-Verlag, Berlin Heidelberg New York, 1967). CrossrefGoogle Scholar
    • 13. B. Huppert , Character Theory of Finite Groups (De Gruyter, Berlin-New York, 1998). CrossrefGoogle Scholar
    • 14. I. M. Isaacs , Character Theory of Finite Groups (Academic Press, New York, 1976). Google Scholar