SM-vanishing conjugacy classes of finite groups
Abstract
Let be a finite group. In this paper, we say that is an SM-vanishing element of , if there exists a strongly monolithic character of such that . The conjugacy class of an SM-vanishing element of is called an SM-vanishing conjugacy class of . Our purpose here is to prove that for determining some properties of the structure of the group , it is enough to consider the same arithmetical conditions on the sizes of SM-vanishing conjugacy classes of instead of certain arithmetical conditions on the sizes of vanishing conjugacy classes of .
Communicated by M. L. Lewis
References
- 1. , Characters of Finite Groups Part 2 (American Mathematical Society, 1999). Google Scholar
- 2. , Character degree graphs that are complete graphs, Proc. Amer. Math. Soc. 135(3) (2007) 671–676. Crossref, Web of Science, Google Scholar
- 3. , On vanishing criteria that control finite group structure, J. Algebra 458 (2016) 207–215. Crossref, Web of Science, Google Scholar
- 4. , On the length of the conjugacy classes of finite groups, J. Algebra 131 (1990) 110–125. Crossref, Web of Science, Google Scholar
- 5. , Remarks on the length of conjugacy classes of finite groups, Comm. Algebra 27(9) (1999) 4347–4353. Crossref, Web of Science, Google Scholar
- 6. , Groups whose vanishing class sizes are not divisible by a given prime, Arch. Math. 94 (2010) 311–317. Crossref, Web of Science, Google Scholar
- 7. , On the vanishing prime graph of solvable groups, J. Group Theory 13 (2010) 189–206. Crossref, Web of Science, Google Scholar
- 8. , On the orders of zeros of irreducible characters, J. Algebra 321 (2009) 345–352. Crossref, Web of Science, Google Scholar
- 9. , Strongly monolithic characters of finite groups, J. Algebra Appl. 22(8) (2023) 2350176. Link, Google Scholar
- 10. , On zeros of irreducible characters lying in a normal subgroup, Ann. Mat. Pura Appl. 199 (2020) 1777–1787. Crossref, Web of Science, Google Scholar
- 11. , Defect zero -blocks for finite simple groups, Trans. Amer. Math. Soc. 348(1) (1996) 331–347. Crossref, Web of Science, Google Scholar
- 12. , Endliche Gruppen I (Springer-Verlag, Berlin Heidelberg New York, 1967). Crossref, Google Scholar
- 13. , Character Theory of Finite Groups (De Gruyter, Berlin-New York, 1998). Crossref, Google Scholar
- 14. , Character Theory of Finite Groups (Academic Press, New York, 1976). Google Scholar