Doubling pre-Lie algebra of rooted trees
Abstract
We study the pre-Lie algebra of rooted trees and we define a pre-Lie structure on its doubling space . Also, we find the enveloping algebras of the two pre-Lie algebras denoted, respectively, by and . We prove that is a module-bialgebra on and we find some relations between the two pre-Lie structures.
Communicated by S. K. Jain
References
- 1. , Doubling bialgebras of rooted trees, Lett. Math. Phys. 107 (2017) 145–165. Crossref, ISI, Google Scholar
- 2. , Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4(3) (2006) 323–357. Crossref, Google Scholar
- 3. , An algebraic theory of integration methods, Math. Comp. 26 (1972) 79–106. Crossref, ISI, Google Scholar
- 4. , A theorem on trees, Quart. J. Math. 23 (1889) 376–378. Google Scholar
- 5. , Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. Appl. Math. 47(2) (2011) 282–308. Crossref, ISI, Google Scholar
- 6. , Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. 332(1) (2001) 681–684. Crossref, Google Scholar
- 7. , Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001 (2001) 395–408. Crossref, ISI, Google Scholar
- 8. , Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998) 203–242. Crossref, ISI, Google Scholar
- 9. , Renormalization in quantum field theory and the Riemann–Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210(1) (2000) 249–273. Crossref, ISI, Google Scholar
- 10. , Trees, free right-symmetric algebras, free Novikov algebras and identities, Homtopy, Homology and Applications 4(2) (2002) 165–190. Crossref, Google Scholar
- 11. , Les algèbres de Hopf des arbres enracinés décorés I + II, Bull. Sci. Math. 126(3) (2002) 193–239 and 249–288. Crossref, Google Scholar
- 12. , Hopf-algebraic structure of families of trees, J. Algebra 126 (1989) 184–210. Crossref, ISI, Google Scholar
- 13. , On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 303–334. Crossref, Google Scholar
- 14. D. Manchon, A short survey on pre-Lie algebras in Noncommutative Geometry and Physics: Renormalisation, motives, Index Theory, E. Schödinger, Institut Lectures in Math. Phys, Eur. Math. Soc., A. Carey (ed.) (2011). Google Scholar
- 15. , Lois pré-Lie en interaction, Comm. Algebra 39(10) (2011) 3662–3680. Crossref, ISI, Google Scholar
- 16. , On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8 (2008) 227–257. Crossref, ISI, Google Scholar
- 17. , On the Lie envelopping algebra of a pre-Lie algebra, J. K-theory 2 (2008) 147–167. Crossref, Google Scholar