World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Doubling pre-Lie algebra of rooted trees

    We study the pre-Lie algebra of rooted trees (𝒯,) and we define a pre-Lie structure on its doubling space (V,). Also, we find the enveloping algebras of the two pre-Lie algebras denoted, respectively, by (,,Γ) and (𝒟,,χ). We prove that (𝒟,,χ) is a module-bialgebra on (,,Γ) and we find some relations between the two pre-Lie structures.

    Communicated by S. K. Jain

    AMSC: 05C90, 81T15, 16T05, 16T10

    References

    • 1. M. Belhaj Mohamed and D. Manchon , Doubling bialgebras of rooted trees, Lett. Math. Phys. 107 (2017) 145–165. Crossref, ISIGoogle Scholar
    • 2. D. Burde , Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4(3) (2006) 323–357. CrossrefGoogle Scholar
    • 3. J. C. Butcher , An algebraic theory of integration methods, Math. Comp. 26 (1972) 79–106. Crossref, ISIGoogle Scholar
    • 4. A. Cayley , A theorem on trees, Quart. J. Math. 23 (1889) 376–378. Google Scholar
    • 5. D. Calaque, K. Ebrahimi-Fard and D. Manchon , Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. Appl. Math. 47(2) (2011) 282–308. Crossref, ISIGoogle Scholar
    • 6. F. Chapoton , Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. 332(1) (2001) 681–684. CrossrefGoogle Scholar
    • 7. F. Chapoton and M. Livernet , Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001 (2001) 395–408. Crossref, ISIGoogle Scholar
    • 8. A. Connes and D. Kreimer , Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998) 203–242. Crossref, ISIGoogle Scholar
    • 9. A. Connes and D. Kreimer , Renormalization in quantum field theory and the Riemann–Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210(1) (2000) 249–273. Crossref, ISIGoogle Scholar
    • 10. A. Dzhumadl’daev and C. Löfwall , Trees, free right-symmetric algebras, free Novikov algebras and identities, Homtopy, Homology and Applications 4(2) (2002) 165–190. CrossrefGoogle Scholar
    • 11. L. Foissy , Les algèbres de Hopf des arbres enracinés décorés I + II, Bull. Sci. Math. 126(3) (2002) 193–239 and 249–288. CrossrefGoogle Scholar
    • 12. R. Grossman and R. G. Larson , Hopf-algebraic structure of families of trees, J. Algebra 126 (1989) 184–210. Crossref, ISIGoogle Scholar
    • 13. D. Kreimer , On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 303–334. CrossrefGoogle Scholar
    • 14. D. Manchon, A short survey on pre-Lie algebras in Noncommutative Geometry and Physics: Renormalisation, motives, Index Theory, E. Schödinger, Institut Lectures in Math. Phys, Eur. Math. Soc., A. Carey (ed.) (2011). Google Scholar
    • 15. D. Manchon and A. Saïdi , Lois pré-Lie en interaction, Comm. Algebra 39(10) (2011) 3662–3680. Crossref, ISIGoogle Scholar
    • 16. H. Munthe-Kaas and W. Wright , On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8 (2008) 227–257. Crossref, ISIGoogle Scholar
    • 17. J. M. Oudom and D. Guin , On the Lie envelopping algebra of a pre-Lie algebra, J. K-theory 2 (2008) 147–167. CrossrefGoogle Scholar