World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

The connection between evolution algebras, random walks and graphs

    https://doi.org/10.1142/S0219498820500231Cited by:22 (Source: Crossref)

    Evolution algebras are a new type of non-associative algebras which are inspired from biological phenomena. A special class of such algebras, called Markov evolution algebras, is strongly related to the theory of discrete time Markov chains. The winning of this relation is that many results coming from Probability Theory may be stated in the context of Abstract Algebra. In this paper, we explore the connection between evolution algebras, random walks and graphs. More precisely, we study the relationships between the evolution algebra induced by a random walk on a graph and the evolution algebra determined by the same graph. Given that any Markov chain may be seen as a random walk on a graph, we believe that our results may add a new landscape in the study of Markov evolution algebras.

    Communicated by V. Futorny

    AMSC: 05C25, 17D92, 17D99, 05C81

    References

    • 1. J. A. Bondy and U. S. R. Murty, Graph Theory With Applications (Elsevier Science Ltd., 1976). CrossrefGoogle Scholar
    • 2. P. Cadavid, M. L. Rodiño Montoya and P. M. Rodriguez, On the isomorphisms between evolution algebras of graphs and random walks, preprint (2018), arXiv:1710.10516V2. Google Scholar
    • 3. P. Cadavid, M. L. Rodiño Montoya and P. M. Rodriguez, Characterization theorems for the space of derivations of evolution algebras associated to graphs, Linear and Multilinear Algebra (2018), https://doi.org/10.1080/03081087.2018.1541962. Crossref, Web of ScienceGoogle Scholar
    • 4. L. M. Camacho, J. R. Gómez, B. A. Omirov and R. M. Turdibaev, Some properties of evolution algebras, Bull. Korean Math. Soc. 50(5) (2013) 1481–1494. Crossref, Web of ScienceGoogle Scholar
    • 5. Y. C. Casado, M. S. Molina and M. V. Velasco, Evolution algebras of arbitrary dimension and their decompositions, Linear Algebra Appl. 495 (2016) 122–162. Crossref, Web of ScienceGoogle Scholar
    • 6. J. M. Casas, M. Ladra, B. A. Omirov and U. A. Rozikov, On Evolution Algebras, Algebra Colloq. 21 (2014) 331. Link, Web of ScienceGoogle Scholar
    • 7. J. M. Casas, M. Ladra and U. A. Rozikov, A chain of evolution algebras, Linear Algebra Appl. 435 (2011) 852–870. Crossref, Web of ScienceGoogle Scholar
    • 8. A. Elduque and A. Labra, Evolution algebras and graphs, J. Algebra Appl. 14 (2015) 1550103. Link, Web of ScienceGoogle Scholar
    • 9. O. J. Falcón, R. M. Falcón and J. Núñez, Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field, J. Algebra 472 (2017) 573–593. Crossref, Web of ScienceGoogle Scholar
    • 10. S. Karlin and H. M. Taylor, An Introduction to Stochastic Modeling, 3rd edn. (Academic Press, 1998). Google Scholar
    • 11. A. Labra, M. Ladra and U. A. Rozikov, An evolution algebra in population genetics, Linear Algebra Appl. 457 (2014) 348–362. Crossref, Web of ScienceGoogle Scholar
    • 12. M. Ladra and U. A. Rozikov, Evolution algebra of a bisexual population, J. Algebra 378 (2013) 153–172. Crossref, Web of ScienceGoogle Scholar
    • 13. J. Núñez, M. Silvero and M. T. Villar, Mathematical tools for the future: Graph Theory and graphicable algebras, Appl. Math. Comput. 219 (2013) 6113–6125. Crossref, Web of ScienceGoogle Scholar
    • 14. J. Núñez, M. L. Rodríguez-Arévalo and M. T. Villar, Certain particular families of graphicable algebras, Appl. Math. Comput. 246 (2014) 416–425. Crossref, Web of ScienceGoogle Scholar
    • 15. S. M. Ross, Introduction to Probability Models, 10th edn. (Academic Press, 2010). Google Scholar
    • 16. U. A. Rozikov and Sh. N. Murodov, Chain of evolution algebras of “chicken” population, Linear Algebra Appl. 450 (2014) 186–201. Crossref, Web of ScienceGoogle Scholar
    • 17. J. P. Tian, Evolution, Algebras and Their Applications, Lecture Notes in Mathematics (Springer-Verlag, 2008). CrossrefGoogle Scholar
    • 18. J. P. Tian, Invitation to research of new mathematics from biology: Evolution algebras, in Topics in Functional Analysis and Algebra, Contemporary Mathematics, Vol. 672 (American Mathematics Society, Providence, RI, 2016), pp. 257–272. CrossrefGoogle Scholar
    • 19. J. P. Tian and P. Vojtechovsky, Mathematical concepts of evolution algebras, Non-Mendelian genetics, Quasigroups Related Syst. 14(1) (2006) 111–122. Google Scholar