World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Betti numbers of toric ideals of graphs: A case study

    https://doi.org/10.1142/S0219498819502268Cited by:8 (Source: Crossref)

    We compute the graded Betti numbers for the toric ideal of a family of graphs constructed by adjoining a cycle to a complete bipartite graph. The key observation is that this family admits an initial ideal which has linear quotients. As a corollary, we compute the Hilbert series and h-vector for all the toric ideals of graphs in this family.

    Communicated by T. H. Ha

    AMSC: 13D02, 13P10, 14M25, 05E40

    References

    • 1. S. Beyarslan, H. T. Hà and A. O’Keefe, Algebraic properties of toric rings of graphs, Preprint 2017, arXiv:1703.08270. Google Scholar
    • 2. J. Biermann, A. O’Keefe and A. Van Tuyl, Bounds on the regularity of toric ideals of graphs, Adv. Appl. Math. 85 (2017) 84–102. Web of ScienceGoogle Scholar
    • 3. B. Braun, Unimodality problems in Ehrhart theory, in Recent Trends in Combinatorics, IMA Mathematical Applications, Vol. 159 (Springer, Cham, 2016), pp. 687–711. Google Scholar
    • 4. B. Braun and R. Davis, Ehrhart series, unimodality, and integrally closed reflexive polytopes, Ann. Comb. 20(4) (2016) 705–717. Web of ScienceGoogle Scholar
    • 5. W. Bruns and J. Herzog, Cohen–Macaulay Rings Revised Edition (Cambridge University Press, 1998). Google Scholar
    • 6. A. Conca and M. Varbaro, Square-free Groebner degenerations, Preprint 2018, arXiv:1805.11923. Google Scholar
    • 7. A. Corso and U. Nagel, Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc. 361 (2009) 1371–1395. Web of ScienceGoogle Scholar
    • 8. A. D’Alì, Toric ideals associated with gap-free graphs, J. Pure Appl. Algebra 219 (2015) 3862–3872. Web of ScienceGoogle Scholar
    • 9. V. Ene and J. Herzog, Gröbner Bases in Commutative Algebra, Graduate Studies in Mathematics, Vol. 130 (American Mathematical Society, 2012). Google Scholar
    • 10. I. Gitler and C. E. Valencia, Multiplicities of edge subrings, Discrete Math. 302 (2005) 107–123. Web of ScienceGoogle Scholar
    • 11. D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/. Google Scholar
    • 12. J. Herzog and Y. Takayama, Resolutions by mapping cones, The Roos Festschrift volume 2, Homol. Homot. Appl. 4(part 2) (2002) 277–294. Google Scholar
    • 13. T. Hibi, A. Higashitani, K. Kimura and A. O’Keefe, Depth of edge rings arising from finite graphs, Proc. Amer. Math. Soc. 139 (2011) 3807–3813. Web of ScienceGoogle Scholar
    • 14. T. Hibi, A. Higashitani, K. Kimura and A. O’Keefe, Depth of initial ideals of normal edge rings, Comm. Algebra 42 (2014) 2908–2922. Web of ScienceGoogle Scholar
    • 15. M. Hochster, Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972) 318–337. Web of ScienceGoogle Scholar
    • 16. M. Katzman, Bipartite graphs whose edge algebras are complete intersections, J. Algebra 220 (1999) 519–530. Web of ScienceGoogle Scholar
    • 17. M. Michałek, Normal and very ample polytopes — old and new open problems, to appear in Oberwolfach Reports (2017), doi:10.4171/OWR/2017/44. Google Scholar
    • 18. H. Ohsugi and T. Hibi, Koszul bipartite graphs, Adv. Appl. Math. 22 (1999) 25–28. Web of ScienceGoogle Scholar
    • 19. I. Peeva, Graded syzygies, in Algebra and Applications, Vol. 14 (Springer-Verlag London Ltd., London, 2011). Google Scholar
    • 20. E. Reyes, C. Tatakis and A. Thoma, Minimal generators of toric ideals of graphs, Adv. Appl. Math. 48 (2012) 64–78. Web of ScienceGoogle Scholar
    • 21. L. Sharifan and M. Varbaro, Graded Betti numbers of ideals with linear quotients, Matematiche (Catania) 63 (2008) 257–265. Google Scholar
    • 22. R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph Theory and its Applications: East and West (Jinan, 1986), Annals New York Academic Science, Vol. 576 (New York Academic Science, New York, 1989), pp. 500–535. Google Scholar
    • 23. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, Vol. 8 (American Mathematical Society, 1996). Google Scholar
    • 24. R. H. Villarreal, Rees algebras of edge ideals, Comm. Algebra 23 (1995) 3513–3524. Web of ScienceGoogle Scholar
    • 25. R. H. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 238 (Marcel Dekker Inc., New York, 2001). Google Scholar