ON THE NOTION OF STRONG IRREDUCIBILITY AND ITS DUAL
Abstract
This note gives a unifying characterization and exposition of strongly irreducible elements and their duals in lattices. The interest in the study of strong irreducibility stems from commutative ring theory, while the dual concept of strong irreducibility had been used to define Zariski-like topologies on specific lattices of submodules of a given module over an associative ring. Based on our lattice theoretical approach, we give a unifying treatment of strong irreducibility, dualize results on strongly irreducible submodules, examine its behavior under central localization and apply our theory to the frame of hereditary torsion theories.
References
- Comm. Algebra 39(11), 4163 (2011), DOI: 10.1080/00927872.2010.519748. Web of Science, Google Scholar
- Topology Appl. 158(3), 457 (2011), DOI: 10.1016/j.topol.2010.11.021. Web of Science, Google Scholar
- J. Abuhlail, Zariski topologies for coprime and second submodules, to appear in Algebra Colloq . Google Scholar
- Rev. Roumaine Math. Pures Appl. 54(4), 275 (2009). Google Scholar
- Bull. Korean Math. Soc. 42(1), 121 (2005), DOI: 10.4134/BKMS.2005.42.1.121. Google Scholar
- J. Aust. Math. Soc. 84(2), 145 (2008), DOI: 10.1017/S1446788708000062. Web of Science, Google Scholar
- Fund. Math. 107(1), 33 (1980). Google Scholar
- Proc. Indian Acad. Sci. Math. Sci. 120(5), 525 (2010), DOI: 10.1007/s12044-010-0053-9. Google Scholar
-
J. Clark , Lifting Modules Supplements and Projectivity in Module Theory ,Frontiers in Mathematics ( Birkhäuser Verlag , Basel , 2006 ) . Google Scholar - Trans. Amer. Math. Soc. 357(7), 2771 (2005), DOI: 10.1090/S0002-9947-04-03583-4. Web of Science, Google Scholar
- Comm. Algebra 30(5), 2355 (2002), DOI: 10.1081/AGB-120003473. Web of Science, Google Scholar
-
J. S. Golan , Torsion Theories ,Pitman Monographs and Surveys in Pure and Applied Mathematics 29 ( Longman Scientific & Technical , Harlow , 1986 ) . Google Scholar -
G. Grätzer , Lattice Theory: Foundation ( Birkhäuser/Springer Basel AG , Basel , 2011 ) . Google Scholar - Comm. Algebra 17(7), 1723 (1989), DOI: 10.1080/00927878908823816. Web of Science, Google Scholar
- Trans. Amer. Math. Soc. 211 , 209 ( 1975 ) . Web of Science, Google Scholar
- J. Algebra 287(2), 432 (2005), DOI: 10.1016/j.jalgebra.2005.03.001. Web of Science, Google Scholar
- J. Pure Appl. Algebra 166(3), 267 (2002), DOI: 10.1016/S0022-4049(01)00043-3. Web of Science, Google Scholar
- Proc. Amer. Math. Soc. 59(2), 217 (1976). Web of Science, Google Scholar
- Acta Math. Sin. (Engl. Ser.) 22(4), 1189 (2006), DOI: 10.1007/s10114-005-0681-7. Web of Science, Google Scholar
-
T. Y. Lam , Lectures on Modules and Rings ,Graduate Texts in Mathematics 189 ( Springer-Verlag , New York , 1999 ) . Google Scholar - J. Algebra 31 , 437 ( 1974 ) . Web of Science, Google Scholar
- J. Algebra Appl. 4(1), 77 (2005), DOI: 10.1142/S0219498805001022. Link, Web of Science, Google Scholar
C. Lomp and A. Sant'Ana , Groups, Rings and Group Rings,Contemporary Mathematics 499 (American Mathematical Society, Providence, RI, 2009) pp. 205–217, DOI: 10.1090/conm/499/09804. Google Scholar- Order 9(3), 265 (1992), DOI: 10.1007/BF00383950. Google Scholar
- Canad. Math. Bull. 20 , 255 ( 1977 ) . Google Scholar
- Proc. Nat. Acad. Sci. USA 87(21), 8583 (1990), DOI: 10.1073/pnas.87.21.8583. Web of Science, Google Scholar
- Proc. Roy. Soc. Edinburgh Sect. A 96(4), 345 (1984), DOI: 10.1017/S0308210500025476. Web of Science, Google Scholar
P. F. Smith , Ring Theory (World Scientific Publishing, River Edge, NJ, 1993) pp. 302–313. Google Scholar- Proc. London Math. Soc. 28(3), 291 (1974). Web of Science, Google Scholar
-
R. Wisbauer , Foundations of Module and Ring Theory: A Handbook for Study and Research ,Algebra, Logic and Applications 3 ( Gordon and Breach Science Publishers , Philadelphia, PA , 1991 ) . Google Scholar - Arch. Math. (Brno) 37(4), 273 (2001). Web of Science, Google Scholar
- Math. Ann. 255(2), 199 (1981), DOI: 10.1007/BF01450670. Web of Science, Google Scholar