World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations

    The classical Feynman–Kac identity builds a bridge between stochastic analysis and partial differential equations (PDEs) by providing stochastic representations for classical solutions of linear Kolmogorov PDEs. This opens the door for the derivation of sampling based Monte Carlo approximation methods, which can be meshfree and thereby stand a chance to approximate solutions of PDEs without suffering from the curse of dimensionality. In this paper, we extend the classical Feynman–Kac formula to certain semilinear Kolmogorov PDEs. More specifically, we identify suitable solutions of stochastic fixed point equations (SFPEs), which arise when the classical Feynman–Kac identity is formally applied to semilinear Kolmorogov PDEs, as viscosity solutions of the corresponding PDEs. This justifies, in particular, employing full-history recursive multilevel Picard (MLP) approximation algorithms, which have recently been shown to overcome the curse of dimensionality in the numerical approximation of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs.

    AMSC: 60H30, 35D40, 35K58

    References

    • 1. A. Andersson, M. Hefter, A. Jentzen and R. Kurniawan , Regularity properties for solutions of infinite dimensional Kolmogorov equations in Hilbert spaces, Potential Anal. 50 (2018) 1–33. ISIGoogle Scholar
    • 2. F. Antonelli , Backward-forward stochastic differential equations, Ann. Appl. Probab. 3 (1993) 777–793. CrossrefGoogle Scholar
    • 3. G. Barles, R. Buckdahn and É. Pardoux , Backward stochastic differential equations and integral-partial differential equations, Stochastics Rep. 60 (1997) 57–83. CrossrefGoogle Scholar
    • 4. G. Barles and B. Perthame , Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987) 557–579. Crossref, ISIGoogle Scholar
    • 5. C. Beck, L. Gonon, M. Hutzenthaler and A. Jentzen , On existence and uniqueness properties for solutions of stochastic fixed point equations, Discrete Contin. Dyn. Syst. Ser. B (2019), 33 pp., arXiv:1908.03382. ISIGoogle Scholar
    • 6. C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen and T. Kruse , Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math. 28 (2020) 197–222. Crossref, ISIGoogle Scholar
    • 7. J.-M. Bismut , Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl. 44 (1973) 384–404. Crossref, ISIGoogle Scholar
    • 8. M. G. Crandall, L. C. Evans and P.-L. Lions , Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc. 282 (1984) 487–502. Crossref, ISIGoogle Scholar
    • 9. M. G. Crandall, H. Ishii and P.-L. Lions , User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. Crossref, ISIGoogle Scholar
    • 10. M. G. Crandall and P.-L. Lions , Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc. 277 (1983) 1–42. Crossref, ISIGoogle Scholar
    • 11. G. Da Prato and J. Zabczyk , Second Order Partial Differential Equations in Hilbert Spaces (Cambridge University Press, 2002). CrossrefGoogle Scholar
    • 12. W. E, M. Hutzenthaler, A. Jentzen and T. Kruse , Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, SN Partial Differ. Equations Appl. (2016), 19 pp., arXiv:1607.03295. Google Scholar
    • 13. W. E, M. Hutzenthaler, A. Jentzen and T. Kruse , On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput. 79 (2019) 1534–1571. Crossref, ISIGoogle Scholar
    • 14. N. El Karoui, C. Kapoudjian, É. Pardoux, S. Peng and M. C. Quenez , Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, Ann. Probab. 25 (1997) 702–737. Crossref, ISIGoogle Scholar
    • 15. K. D. Elworthy , Stochastic dynamical systems and their flows, in Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978) (Academic Press, 1978), pp. 79–95. Google Scholar
    • 16. L. C. Evans , Partial Differential Equations (American Mathematical Society, 2010). CrossrefGoogle Scholar
    • 17. Ĭ. Ī. Gīhman and A. V. Skorohod , Stochastic Differential Equations, (Springer-Verlag, 1972). CrossrefGoogle Scholar
    • 18. M. B. Giles, A. Jentzen and T. Welti, Generalised multilevel Picard approximations (2019), 61 pp., arXiv:1911.03188. Google Scholar
    • 19. I. Gyöngy and N. Krylov , Existence of strong solutions for Itô’s stochastic equations via approximations, Probab. Theory Related Fields 105 (1996) 143–158. Crossref, ISIGoogle Scholar
    • 20. M. Hairer, M. Hutzenthaler and A. Jentzen , Loss of regularity for Kolmogorov equations, Ann. Probab. 43 (2015) 468–527. Crossref, ISIGoogle Scholar
    • 21. Y. Hu and S. Peng , Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields 103 (1995) 273–283. Crossref, ISIGoogle Scholar
    • 22. Y. Hu and J. Yong , Forward-backward stochastic differential equations with nonsmooth coefficients, Stochastic Process. Appl. 87 (2000) 93–106. Crossref, ISIGoogle Scholar
    • 23. M. Hutzenthaler, A. Jentzen and T. Kruse , Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, Found. Comput. Math. (2019), 33 pp., arXiv:1912.02571. ISIGoogle Scholar
    • 24. M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities, (2020), 37 pp., arXiv:2009.02484. Google Scholar
    • 25. M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger , Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Proc. A 476 (2020) 630–654. Google Scholar
    • 26. M. Hutzenthaler, A. Jentzen and P. von Wurstemberger , Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electron. J. Probab. 25 (2020), 73 pp. Crossref, ISIGoogle Scholar
    • 27. M. Hutzenthaler and T. Kruse , Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal. 58 (2020) 929–961. Crossref, ISIGoogle Scholar
    • 28. C. Imbert and L. Silvestre , An introduction to fully nonlinear parabolic equations, in An Introduction to the Kähler–Ricci Flow (Springer, 2013), pp. 7–88. CrossrefGoogle Scholar
    • 29. A. Kalinin and A. Schied, Mild and viscosity solutions to semilinear parabolic path-dependent PDEs (2016), 23 pp., arXiv:1611.08318. Google Scholar
    • 30. I. Karatzas and S. Shreve , Brownian Motion and Stochastic Calculus, 2nd edn. (Springer-Verlag, 1991). CrossrefGoogle Scholar
    • 31. A. Klenke , Probability Theory, 1st edn. (Springer-Verlag, 2008). CrossrefGoogle Scholar
    • 32. N. V. Krylov , Lectures on Elliptic and Parabolic Equations in Hölder Spaces (American Mathematical Society, 1996). CrossrefGoogle Scholar
    • 33. N. V. Krylov , Lectures on Elliptic and Parabolic Equations in Sobolev Spaces (American Mathematical Society, 2008). CrossrefGoogle Scholar
    • 34. X.-M. Li and M. Scheutzow , Lack of strong completeness for stochastic flows, Ann. Probab. 39 (2011) 1407–1421. Crossref, ISIGoogle Scholar
    • 35. W. Liu and M. Röckner , Stochastic Partial Differential Equations: An Introduction (Springer, 2015). CrossrefGoogle Scholar
    • 36. J. Ma, P. Protter and J. M. Yong , Solving forward-backward stochastic differential equations explicitly—a four step scheme, Probab. Theory Related Fields 98 (1994) 339–359. Crossref, ISIGoogle Scholar
    • 37. J. Ma and J. Zhang , Representation theorems for backward stochastic differential equations, Ann. Appl. Probab. 12 (2002) 1390–1418. Crossref, ISIGoogle Scholar
    • 38. É. Pardoux , Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, in Stochastic Analysis and Related Topics VI (Birkhäuser, 1998), pp. 79–127. CrossrefGoogle Scholar
    • 39. É. Pardoux and S. Peng , Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990) 55–61. Crossref, ISIGoogle Scholar
    • 40. É. Pardoux and S. Peng , Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, 1992), pp. 200–217. CrossrefGoogle Scholar
    • 41. É. Pardoux, F. Pradeilles and Z. Rao , Probabilistic interpretation of a system of semi-linear parabolic partial differential equations, Ann. Inst. H. Poincaré Probab. Stat. 33 (1997) 467–490. Crossref, ISIGoogle Scholar
    • 42. É. Pardoux and A. Răşcanu , Stochastic Differential Equations, Backward SDEs, Partial Differential Equations (Springer, 2014). CrossrefGoogle Scholar
    • 43. É. Pardoux and S. Tang , Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields 114 (1999) 123–150. Crossref, ISIGoogle Scholar
    • 44. S. Peng , Nonlinear Expectations and Stochastic Calculus Under Uncertainty (Springer, 2019). CrossrefGoogle Scholar
    • 45. S. Peng , Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Rep. 37 (1991) 61–74. CrossrefGoogle Scholar
    • 46. R. T. Seeley , Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964) 625–626. Google Scholar
    • 47. A. B. Sow and É. Pardoux , Probabilistic interpretation of a system of quasilinear parabolic PDEs, Stochastics Rep. 76 (2004) 429–477. CrossrefGoogle Scholar