World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Use of Tuned Mass Absorber to Prevent Overturning of the Rigid Block During Earthquake

    In the paper, we undertake the topic of stabilization of rigid blocks under seismic excitation. We investigate the influence of tuned mass absorbers (TMAs) on the dynamics of rigid block and check if this well known and widely used device can help to prevent overturning. We use fully nonstationary stochastic earthquake model of ground motion and consider excitation in horizontal direction only. We perform a series of numerical simulations and employ probability approach to analyze the influence of TMA parameters’ on the probability of rigid block’s overturning. The presented method can be used to optimize TMAs parameters to achieve the highest chance that the block will remain standing. We consider structures with symmetric and asymmetric mass distribution. Presented results show that it is possible to design and tune the stabilizing device in such a way that it is highly effective regardless of the rigid block asymmetry.

    References

    • 1. Housner G. W., The bahaviour of unverted pendulum structures during earthquakes, Bull. Seismol. Soc. Am. 53 (2) (1963) 403–417. CrossrefGoogle Scholar
    • 2. Yim C.-S., Chopra A. K. and Penzien J., Rocking response of rigid blocks to earthquakes, Earthquake Eng. Struct. Dyn. 8 (6) (1980) 565–587. Crossref, ISIGoogle Scholar
    • 3. Chopraa A. and Yim S., Simplified earthquake analysis of structures with foundation uplift, J. Struct. Eng. 111 (4) (1985) 906–930. Crossref, ISIGoogle Scholar
    • 4. Tso W. K. and Wong C. M., Steady state rocking response of rigid blocks part 1: Analysis, Earthquake Eng. Struct. Dyn. 18 (1) (1989) 89–106. Crossref, ISIGoogle Scholar
    • 5. Wong C. M. and Tso W. K., Steady state rocking response of rigid blocks part 2: Experiment, Earthquake Eng. Struct. Dyn. 18 (1) (1989) 107–120. Crossref, ISIGoogle Scholar
    • 6. Hogan S. J., On the dynamics of rigid-block motion under harmonic forcing, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 425 (1869) (1989) 441–476. Crossref, ISIGoogle Scholar
    • 7. Hogan S. J., The many steady state responses of a rigid block under harmonic forcing, Earthquake Eng. Struct. Dyn. 19 (7) (1990) 1057–1071. Crossref, ISIGoogle Scholar
    • 8. Lipscombe P. and Pellegrino S., Free rocking of prismatic blocks, J. Eng. Mech. 119 (7) (1993) 1387–1410. Crossref, ISIGoogle Scholar
    • 9. Hogan S., Slender rigid block motion, J. Eng. Mech. 120 (1) (1994) 11–24. Crossref, ISIGoogle Scholar
    • 10. Shi B., Anooshehpoor A., Zeng Y. and Brune J. N., Rocking and overturning of precariously balanced rocks by earthquakes, Bull. Seismol. Soc. Am. 86 (5) (1996) 1364–1371. Crossref, ISIGoogle Scholar
    • 11. Pena F., Prieto F., Lourenco P. B., Campos Costa A. and Lemos J. V., On the dynamics of rocking motion of single rigid-block structures, Earthquake Eng. Struct. Dyn. 36 (15) (2007) 2383–2399. Crossref, ISIGoogle Scholar
    • 12. Yilmaz C., Gharib M. and Hurmuzlu Y., Solving frictionless rocking block problem with multiple impacts, Proc. R. Soc. Lon. A, Math. Phys. Eng. Sci. 465(2111) (2009) 3323–3339. Crossref, ISIGoogle Scholar
    • 13. H. Frahm, Device for Damping Vibrations of Bodies (1909). U.S. Patent No. 989958. Google Scholar
    • 14. Den Hartog J. P., Mechanical Vibrations (McGraw-Hill, New York, 1934). Google Scholar
    • 15. Hatwal A. G. H. and Mallik A. L., Non-linear vibrations of a harmonically excited autoparametric system, J. Sound Vib. 81 (2) (1982) 153–164, cited By (since 1996) 40. Crossref, ISIGoogle Scholar
    • 16. Hatwal H., Mallik A. and Ghosh A., Forced nonlinear oscillations of an autoparametric system part 1: periodic responses, J. Appl. Mech. 50 (3) (1983) 657–662. Crossref, ISIGoogle Scholar
    • 17. Hatwal H., Mallik A. K. and Ghosh A., Forced nonlinear oscillations of an autoparametric system—part 2: Chaotic responses, J. Appl. Mech. 50 (3) (1983) 663–668. Crossref, ISIGoogle Scholar
    • 18. Owji H., Shirazi A. H. N. and Sarvestani H. H., A comparison between a new semi-active tuned mass damper and an active tuned mass damper, Proc. Eng. 14 (2011) 2779–2787. CrossrefGoogle Scholar
    • 19. Ali M. M. and Sun Moon K., Structural developments in tall buildings: Current trends and future prospects, Archit. Sci. Rev. 50 (3) (2007) 205–223. CrossrefGoogle Scholar
    • 20. Kwon S.-D. and Park K.-S., Suppression of bridge flutter using tuned mass dampers based on robust performance design, J. Wind Eng. Ind. Aerodyn. 92 (2004) 919–934. Crossref, ISIGoogle Scholar
    • 21. Kitagawa M., Technology of the akashi kaikyo bridge, Struct. Control Health Monit. 11 (2) (2004) 75–90. CrossrefGoogle Scholar
    • 22. Yang Y., Munoa J. and Altintas Y., Optimization of multiple tuned mass dampers to suppress machine tool chatter, Int. J. Mach. Tools Manuf. 50 (9) (2010) 834–842. Crossref, ISIGoogle Scholar
    • 23. Rashid A. and Nicolescu C. M., Design and implementation of tuned viscoelastic dampers for vibration control in milling, Int. J. Mach Tools Manuf. 48 (9) (2008) 1036–1053. Crossref, ISIGoogle Scholar
    • 24. Ebrahimpour A. and Sack R. L., A review of vibration serviceability criteria for floor structures, Comput. Struct. 83 (2005) 2488–2494. Crossref, ISIGoogle Scholar
    • 25. Setareh M. and Hanson R., Tuned mass dampers for balcony vibration control, J. Struct. Eng. 118 (3) (1992) 723–740. Crossref, ISIGoogle Scholar
    • 26. Walsh P. and Lamancusa J., A variable stiffness vibration absorber for minimization of transient vibrations, J. Sound Vib. 158 (2) (1992) 195–211. Crossref, ISIGoogle Scholar
    • 27. Alsuwaiyan A. and Shaw S., Performance and dynamics stability of general-path centrifugal pendulum vibration absorbers, J. Sound Vib. 252 (5) (2002) 791–815. Crossref, ISIGoogle Scholar
    • 28. Ishida Y., Recent developement of the passive vibration control method, Mech. Syst. Signal Process. 29 (2012) 2–18. Crossref, ISIGoogle Scholar
    • 29. Viguié R., Kerschen G., Golinval J., McFarland D., Bergman L., Vakakis A. and van de Wouw N., Using passive nonlinear targeted energy transfer to stabilize drill-string systems, Mech. Syst. Signal Process. 23 (1) (2009) 148–169. Crossref, ISIGoogle Scholar
    • 30. Li C., Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration, Earthquake Eng. Struct. Dyn. 29 (9) (2000) 1405–1421. Crossref, ISIGoogle Scholar
    • 31. Zuo L. and Nayfeh S., Minimax optimization of multi-degree-of-freedom tuned-mass dampers, J. Sound Vib. 272 (35) (2004) 893–908. Crossref, ISIGoogle Scholar
    • 32. Brzeski P., Perlikowski P. and Kapitaniak T., Numerical optimization of tuned mass absorbers attached to strongly nonlinear duffing oscillator, Commun. Nonlinear Sci. Numer. Simul. 19 (1) (2014) 298–310. Crossref, ISIGoogle Scholar
    • 33. Brzeski P., Pavlovskaia E., Kapitaniak T. and Perlikowski P., The application of inerter in tuned mass absorber, Int. J. NonLinear Mech. 70 (2014) 20–29. Crossref, ISIGoogle Scholar
    • 34. Kecik K. and Kapitaniak M., Parametric analysis of magnetorheologically damped pendulum vibration absorber, Int. J. Struct. Stab. Dyn. 14(08) (2014) 1440015. Link, ISIGoogle Scholar
    • 35. Lenci S. and Rega G., Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks, Int. J. Bifurcation Chaos 15 (06) (2005) 1901–1918. Link, ISIGoogle Scholar
    • 36. Vassiliou M. F. and Makris N., Analysis of the rocking response of rigid blocks standing free on a seismically isolated base, Earthquake Eng. Struct. Dyn. 41 (2) (2012) 177–196. Crossref, ISIGoogle Scholar
    • 37. Contento A. and Di Egidio A., On the use of base isolation for the protection of rigid bodies placed on a multi-storey frame under seismic excitation, Eng. Struct. 62 (2014) 1–10. Crossref, ISIGoogle Scholar
    • 38. A. D. K. Sanaz Rezaeian, Stochastic modeling and simulation of ground motions for performance-based earthquake engineering, Ph.D. thesis, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley (2010). Google Scholar
    • 39. Solomon H. L. C. S. and Lin Y., Chaotic behavior and stability of free-standing offshore equipement, Ocean Eng. 18 (3) (1991) 225–250. Crossref, ISIGoogle Scholar
    • 40. Horton B., Xu X. and Wiercigroch M., Transient tumbling chaos and damping identification for parametric pendulum, Philos. Trans. R. Soc. Lond. A 366 (2007) 767–784. Crossref, ISIGoogle Scholar
    • 41. Rezaeian S. and Der Kiureghian A., Simulation of synthetic ground motions for specified earthquake and site characteristics, Earthquake Engineering and Structural Dynamics, Wiley Online Lib. 39 (2010) 1155–1180. Google Scholar
    Remember to check out the Most Cited Articles!

    Remember to check out the structures