World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Operads for algebraic quantum field theory

    https://doi.org/10.1142/S0219199720500078Cited by:15 (Source: Crossref)

    We construct a colored operad whose category of algebras is the category of algebraic quantum field theories. This is achieved by a construction that depends on the choice of a category, whose objects provide the operad colors, equipped with an additional structure that we call an orthogonality relation. This allows us to describe different types of quantum field theories, including theories on a fixed Lorentzian manifold, locally covariant theories and also chiral conformal and Euclidean theories. Moreover, because the colored operad depends functorially on the orthogonal category, we obtain adjunctions between categories of different types of quantum field theories. These include novel and interesting constructions such as time-slicification and local-to-global extensions of quantum field theories. We compare the latter to Fredenhagen’s universal algebra.

    AMSC: 81Txx, 18D50

    References

    • 1. D. Ayala and J. Francis, Factorization homology of topological manifolds, J. Topol. 8(4) (2015) 1045–1084, arXiv:1206.5522 [math.AT]. Crossref, Web of ScienceGoogle Scholar
    • 2. C. Bär, N. Ginoux and F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization (European Mathematical Society, Zürich, 2007) arXiv:0806.1036 [math.DG]. Google Scholar
    • 3. A. Bartels, C. L. Douglas and A. Henriques, Conformal nets I: Coordinate-free nets, Int. Math. Res. Not. 2015(13) (2015) 4975–5052, arXiv:1302.2604 [math.OA]. Crossref, Web of ScienceGoogle Scholar
    • 4. M. Benini, C. Dappiaggi and A. Schenkel, Algebraic quantum field theory on spacetimes with timelike boundary, Annales Henri Poincaré 19(8) (2018) 2401–2433, arXiv:1712.06686 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 5. M. Benini, M. Perin and A. Schenkel, Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds, Commun. Math. Phys. (2019), https://doi.org/10.1007/s00220-019-03561-x. Web of ScienceGoogle Scholar
    • 6. M. Benini and A. Schenkel, Quantum field theories on categories fibered in groupoids, Commun. Math. Phys. 356 (2017) 19–64, arXiv:1610.06071 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 7. M. Benini, A. Schenkel and U. Schreiber, The stack of Yang-Mills fields on Lorentzian manifolds, Commun. Math. Phys. 359 (2018) 765–820, arXiv:1704.01378 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 8. M. Benini, A. Schenkel and R. J. Szabo, Homotopy colimits and global observables in Abelian gauge theory, Lett. Math. Phys. 105 (2015) 1193–1222, arXiv:1503.08839 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 9. M. Benini, A. Schenkel and L. Woike, Involutive categories, colored ∗-operads and quantum field theory, Theory Appl. Categor. 34 (2019) 13–57, arXiv:1802.09555 [math.CT]. Web of ScienceGoogle Scholar
    • 10. M. Benini, A. Schenkel and L. Woike, Homotopy theory of algebraic quantum field theories, Lett. Math. Phys. 109 (2019) 1487–1532, arXiv:1805.08795 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 11. C. Berger and I. Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, in Categories in Algebra, Geometry and Mathematical Physics, eds. A. Davydov, M. Batanin, M. Johnson, S. Lack and A. Neeman, Contemporary Mathematics, Vol. 431 (American Mathematical Society, Providence, RI, 2007), pp. 31–58. CrossrefGoogle Scholar
    • 12. F. Borceux, Handbook of Categorical Algebra 1: Basic Category Theory, Encyclopedia of Mathematics and its Applications, Vol. 50 (Cambridge University Press, Cambridge, 1994). Google Scholar
    • 13. F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Encyclopedia of Mathematics and its Applications, Vol. 51 (Cambridge University Press, Cambridge, 1994). Google Scholar
    • 14. R. Brunetti, K. Fredenhagen and R. Verch, The generally covariant locality principle: A new paradigm for local quantum field theory, Commun. Math. Phys. 237 (2003) 31–68, arXiv:math-ph/0112041. Crossref, Web of ScienceGoogle Scholar
    • 15. K. Costello and O. Gwilliam, Factorization Algebras in Quantum Field Theory, Vol. 1, New Mathematical Monographs, Vol. 31 (Cambridge University Press, Cambridge, 2017). CrossrefGoogle Scholar
    • 16. R. Dijkgraaf, C. Vafa, E. P. Verlinde and H. L. Verlinde, The operator algebra of orbifold models, Commun. Math. Phys. 123 (1989) 485–526. Crossref, Web of ScienceGoogle Scholar
    • 17. C. J. Fewster and R. Verch, Algebraic quantum field theory in curved spacetimes, in Advances in Algebraic Quantum Field Theory, eds. R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason (Springer Verlag, Heidelberg, 2015), pp. 125–189, arXiv:1504.00586 [math-ph]. CrossrefGoogle Scholar
    • 18. K. Fredenhagen, Generalizations of the theory of superselection sectors, in The Algebraic Theory of Superselection Sectors: Introduction and Recent Results, ed. D. Kastler, Vol. 379 (World Scientific Publishing, 1990). Google Scholar
    • 19. K. Fredenhagen, Global observables in local quantum physics, in Quantum and Non-commutative Analysis: Past, Present and Future Perspectives, eds. H. Araki, K. R. Ito, A. Kishimoto and I. Ojima (Kluwer Academic Publishers, 1993), pp. 41–51. CrossrefGoogle Scholar
    • 20. K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras II: Geometric aspects and conformal covariance, Rev. Math. Phys. 1992 (1992) 113–157. LinkGoogle Scholar
    • 21. B. Fresse, Homotopy of Operads and Grothendieck-Teichmüller Groups. Part 1: The Algebraic Theory and its Topological Background, Mathematical Surveys and Monographs, Vol. 217 (American Mathematical Society, Providence, RI, 2017). Google Scholar
    • 22. J. Fuchs and C. Schweigert, Coends in conformal field theory, in Lie Algebras, Vertex Operator Algebras, and Related Topics, eds. K. Barron, E. Jurisich, A. Milas and K. Misra, Contemporary Mathematical, Vol. 695 (American Mathematical Society, Providence, RI, 2017), pp. 65–82, arXiv:1604.01670 [math.QA]. CrossrefGoogle Scholar
    • 23. P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 35 (Springer Verlag, New York, 1967). CrossrefGoogle Scholar
    • 24. N. Gambino and A. Joyal, On operads, bimodules and analytic functors, Mem. Amer. Math. Soc. 249(1184) (2017) v+110 pp., arXiv:1405.7270 [math.CT]. Google Scholar
    • 25. O. Gwilliam and K. Rejzner, Relating nets and factorization algebras of observables: Free field theories, Commun. Math. Phys. 373 (2020) 107–174, arXiv:1711.06674 [math-ph]. Crossref, Web of ScienceGoogle Scholar
    • 26. R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964) 848–861. Crossref, Web of ScienceGoogle Scholar
    • 27. P. T. Johnstone and I. Moerdijk, Local maps of toposes, Proc. London Math. Soc. (3) 58 (1989) 281–305. Crossref, Web of ScienceGoogle Scholar
    • 28. M. Kapranov and Y. Manin, Modules and Morita theorem for operads, Amer. J. Math. 123 (2001) 811–838, arXiv:math/9906063. Crossref, Web of ScienceGoogle Scholar
    • 29. Y. Kawahigashi, Conformal field theory, tensor categories and operator algebras, J. Phys. A 48 (2015) 303001, 57 pp., arXiv:1503.05675 [math-ph]. CrossrefGoogle Scholar
    • 30. B. Lang, Universal constructions in algebraic and locally covariant quantum field theory, Ph.D thesis, University of York (2014). Google Scholar
    • 31. J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, Vol. 346 (Springer Verlag, Heidelberg, 2012). CrossrefGoogle Scholar
    • 32. F. Loregian, Coend Calculus, preprint (2019), arXiv:1501.02503 [math.CT]. Google Scholar
    • 33. J. Lurie, Higher Algebra, book draft available at http://www.math.harvard.edu/∼lurie/papers/HA.pdf. Google Scholar
    • 34. S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics (Springer Verlag, New York, 1998). Google Scholar
    • 35. D. Pavlov and J. Scholbach, Admissibility and rectification of colored symmetric operads, J. Topology 11 (2018) 559–601, arXiv:1410.5675 [math.AT]. Crossref, Web of ScienceGoogle Scholar
    • 36. K. H. Rehren, Algebraic conformal quantum field theory in perspective, in Advances in Algebraic Quantum Field Theory, eds. R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason (Springer Verlag, Heidelberg, 2015), pp. 331–364, arXiv:1501.03313 [hep-th]. CrossrefGoogle Scholar
    • 37. C. W. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D thesis, Massachusetts Institute of Technology (1996). Google Scholar
    • 38. D. Schlingemann, From Euclidean field theory to quantum field theory, Rev. Math. Phys. 11 (1999) 1151–1178, arXiv:hep-th/9802035. Link, Web of ScienceGoogle Scholar
    • 39. C. Schweigert and L. Woike, Orbifold construction for topological field theories, J. Pure Appl. Algebra 223 (2019) 1167–1192, arXiv:1705.05171 [math.QA]. Crossref, Web of ScienceGoogle Scholar
    • 40. D. White and D. Yau, Bousfield localization and algebras over colored operads, Appl. Categ. Structures 26 (2018) 153–203, arXiv:1503.06720 [math.AT]. Crossref, Web of ScienceGoogle Scholar
    • 41. D. Yau, Colored Operads, Graduate Studies in Mathematics, Vol. 170 (American Mathematical Society, Providence, RI, 2016). CrossrefGoogle Scholar
    • 42. D. Yau, Homotopical Quantum Field Theory (World Scientific, Singapore, 2019), arXiv:1802.08101 [math-ph]. LinkGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!