Operads for algebraic quantum field theory
Abstract
We construct a colored operad whose category of algebras is the category of algebraic quantum field theories. This is achieved by a construction that depends on the choice of a category, whose objects provide the operad colors, equipped with an additional structure that we call an orthogonality relation. This allows us to describe different types of quantum field theories, including theories on a fixed Lorentzian manifold, locally covariant theories and also chiral conformal and Euclidean theories. Moreover, because the colored operad depends functorially on the orthogonal category, we obtain adjunctions between categories of different types of quantum field theories. These include novel and interesting constructions such as time-slicification and local-to-global extensions of quantum field theories. We compare the latter to Fredenhagen’s universal algebra.
References
- 1. , Factorization homology of topological manifolds, J. Topol. 8(4) (2015) 1045–1084, arXiv:1206.5522 [math.AT]. Crossref, Web of Science, Google Scholar
- 2. C. Bär, N. Ginoux and F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization (European Mathematical Society, Zürich, 2007) arXiv:0806.1036 [math.DG]. Google Scholar
- 3. , Conformal nets I: Coordinate-free nets, Int. Math. Res. Not. 2015(13) (2015) 4975–5052, arXiv:1302.2604 [math.OA]. Crossref, Web of Science, Google Scholar
- 4. , Algebraic quantum field theory on spacetimes with timelike boundary, Annales Henri Poincaré 19(8) (2018) 2401–2433, arXiv:1712.06686 [math-ph]. Crossref, Web of Science, Google Scholar
- 5. , Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds, Commun. Math. Phys. (2019), https://doi.org/10.1007/s00220-019-03561-x. Web of Science, Google Scholar
- 6. , Quantum field theories on categories fibered in groupoids, Commun. Math. Phys. 356 (2017) 19–64, arXiv:1610.06071 [math-ph]. Crossref, Web of Science, Google Scholar
- 7. , The stack of Yang-Mills fields on Lorentzian manifolds, Commun. Math. Phys. 359 (2018) 765–820, arXiv:1704.01378 [math-ph]. Crossref, Web of Science, Google Scholar
- 8. , Homotopy colimits and global observables in Abelian gauge theory, Lett. Math. Phys. 105 (2015) 1193–1222, arXiv:1503.08839 [math-ph]. Crossref, Web of Science, Google Scholar
- 9. , Involutive categories, colored ∗-operads and quantum field theory, Theory Appl. Categor. 34 (2019) 13–57, arXiv:1802.09555 [math.CT]. Web of Science, Google Scholar
- 10. , Homotopy theory of algebraic quantum field theories, Lett. Math. Phys. 109 (2019) 1487–1532, arXiv:1805.08795 [math-ph]. Crossref, Web of Science, Google Scholar
- 11. ,
Resolution of coloured operads and rectification of homotopy algebras , in Categories in Algebra, Geometry and Mathematical Physics, eds. A. Davydov, M. Batanin, M. Johnson, S. Lack and A. Neeman,Contemporary Mathematics , Vol. 431 (American Mathematical Society, Providence, RI, 2007), pp. 31–58. Crossref, Google Scholar - 12. , Handbook of Categorical Algebra 1: Basic Category Theory,
Encyclopedia of Mathematics and its Applications , Vol. 50 (Cambridge University Press, Cambridge, 1994). Google Scholar - 13. , Handbook of Categorical Algebra 2: Categories and Structures,
Encyclopedia of Mathematics and its Applications , Vol. 51 (Cambridge University Press, Cambridge, 1994). Google Scholar - 14. , The generally covariant locality principle: A new paradigm for local quantum field theory, Commun. Math. Phys. 237 (2003) 31–68, arXiv:math-ph/0112041. Crossref, Web of Science, Google Scholar
- 15. , Factorization Algebras in Quantum Field Theory, Vol. 1,
New Mathematical Monographs , Vol. 31 (Cambridge University Press, Cambridge, 2017). Crossref, Google Scholar - 16. , The operator algebra of orbifold models, Commun. Math. Phys. 123 (1989) 485–526. Crossref, Web of Science, Google Scholar
- 17. ,
Algebraic quantum field theory in curved spacetimes , in Advances in Algebraic Quantum Field Theory, eds. R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason (Springer Verlag, Heidelberg, 2015), pp. 125–189, arXiv:1504.00586 [math-ph]. Crossref, Google Scholar - 18. ,
Generalizations of the theory of superselection sectors , in The Algebraic Theory of Superselection Sectors: Introduction and Recent Results, ed. D. Kastler, Vol. 379 (World Scientific Publishing, 1990). Google Scholar - 19. ,
Global observables in local quantum physics , in Quantum and Non-commutative Analysis: Past, Present and Future Perspectives, eds. H. Araki, K. R. Ito, A. Kishimoto and I. Ojima (Kluwer Academic Publishers, 1993), pp. 41–51. Crossref, Google Scholar - 20. , Superselection sectors with braid group statistics and exchange algebras II: Geometric aspects and conformal covariance, Rev. Math. Phys. 1992 (1992) 113–157. Link, Google Scholar
- 21. , Homotopy of Operads and Grothendieck-Teichmüller Groups. Part 1: The Algebraic Theory and its Topological Background,
Mathematical Surveys and Monographs , Vol. 217 (American Mathematical Society, Providence, RI, 2017). Google Scholar - 22. ,
Coends in conformal field theory , in Lie Algebras, Vertex Operator Algebras, and Related Topics, eds. K. Barron, E. Jurisich, A. Milas and K. Misra,Contemporary Mathematical , Vol. 695 (American Mathematical Society, Providence, RI, 2017), pp. 65–82, arXiv:1604.01670 [math.QA]. Crossref, Google Scholar - 23. , Calculus of Fractions and Homotopy Theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete , Vol. 35 (Springer Verlag, New York, 1967). Crossref, Google Scholar - 24. , On operads, bimodules and analytic functors, Mem. Amer. Math. Soc. 249(1184) (2017) v+110 pp., arXiv:1405.7270 [math.CT]. Google Scholar
- 25. , Relating nets and factorization algebras of observables: Free field theories, Commun. Math. Phys. 373 (2020) 107–174, arXiv:1711.06674 [math-ph]. Crossref, Web of Science, Google Scholar
- 26. , An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964) 848–861. Crossref, Web of Science, Google Scholar
- 27. , Local maps of toposes, Proc. London Math. Soc. (3) 58 (1989) 281–305. Crossref, Web of Science, Google Scholar
- 28. , Modules and Morita theorem for operads, Amer. J. Math. 123 (2001) 811–838, arXiv:math/9906063. Crossref, Web of Science, Google Scholar
- 29. , Conformal field theory, tensor categories and operator algebras, J. Phys. A 48 (2015) 303001, 57 pp., arXiv:1503.05675 [math-ph]. Crossref, Google Scholar
- 30. B. Lang, Universal constructions in algebraic and locally covariant quantum field theory, Ph.D thesis, University of York (2014). Google Scholar
- 31. , Algebraic Operads,
Grundlehren der Mathematischen Wissenschaften , Vol. 346 (Springer Verlag, Heidelberg, 2012). Crossref, Google Scholar - 32. F. Loregian, Coend Calculus, preprint (2019), arXiv:1501.02503 [math.CT]. Google Scholar
- 33. J. Lurie, Higher Algebra, book draft available at http://www.math.harvard.edu/∼lurie/papers/HA.pdf. Google Scholar
- 34. , Categories for the Working Mathematician,
Graduate Texts in Mathematics (Springer Verlag, New York, 1998). Google Scholar - 35. , Admissibility and rectification of colored symmetric operads, J. Topology 11 (2018) 559–601, arXiv:1410.5675 [math.AT]. Crossref, Web of Science, Google Scholar
- 36. ,
Algebraic conformal quantum field theory in perspective , in Advances in Algebraic Quantum Field Theory, eds. R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason (Springer Verlag, Heidelberg, 2015), pp. 331–364, arXiv:1501.03313 [hep-th]. Crossref, Google Scholar - 37. C. W. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D thesis, Massachusetts Institute of Technology (1996). Google Scholar
- 38. , From Euclidean field theory to quantum field theory, Rev. Math. Phys. 11 (1999) 1151–1178, arXiv:hep-th/9802035. Link, Web of Science, Google Scholar
- 39. , Orbifold construction for topological field theories, J. Pure Appl. Algebra 223 (2019) 1167–1192, arXiv:1705.05171 [math.QA]. Crossref, Web of Science, Google Scholar
- 40. , Bousfield localization and algebras over colored operads, Appl. Categ. Structures 26 (2018) 153–203, arXiv:1503.06720 [math.AT]. Crossref, Web of Science, Google Scholar
- 41. , Colored Operads,
Graduate Studies in Mathematics , Vol. 170 (American Mathematical Society, Providence, RI, 2016). Crossref, Google Scholar - 42. , Homotopical Quantum Field Theory (World Scientific, Singapore, 2019), arXiv:1802.08101 [math-ph]. Link, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these NEW Mathematics books for inspirations & latest information in your research area! |