World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Curve classes on irreducible holomorphic symplectic varieties

    https://doi.org/10.1142/S0219199719500780Cited by:5 (Source: Crossref)

    We prove that the integral Hodge conjecture holds for 1-cycles on irreducible holomorphic symplectic varieties of K3[n]-type and of generalized Kummer type. As an application, we give a new proof of the integral Hodge conjecture for cubic fourfolds.

    AMSC: 14C25, 14J40

    References

    • 1. E. Amerik and M. Verbitsky , Rational curves on hyperkähler manifolds, Int. Math. Res. Notices 23 (2015) 13009–13045. Google Scholar
    • 2. A. Apostolov , Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected, Ann. Inst. Fourier 64(1) (2014) 189–202. Crossref, Web of ScienceGoogle Scholar
    • 3. B. Bakker and C. Lehn, A global Torelli theorem for singular symplectic varieties, preprint (2016); arXiv:1612.07894. Google Scholar
    • 4. E. Ballico, F. Catanese and C. Ciliberto , Trento Examples, Classification of irregular varieties (Trento, 1990), Lecture Notes in Mathematics, Vol. 1515 (Springer, Berlin, 1992), pp. 134–139. CrossrefGoogle Scholar
    • 5. A. Bayer, B. Hassett and Y. Tschinkel , Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Sci. de ENS. 48(4) (2017) 941–950. Google Scholar
    • 6. A. Beauville , Variétés Kählériennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983) 755–782. Crossref, Web of ScienceGoogle Scholar
    • 7. A. Beauville and R. Donagi , La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris 301 (1985) 703–706. Google Scholar
    • 8. O. Benoist and J. C. Ottem, Failure of the integral Hodge conjecture for threefolds of Kodaira dimension zero, To appear in Commentarii Mathematici Helvetici (2018). Google Scholar
    • 9. S. Bloch and V. Srinivas , Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235–1253. Crossref, Web of ScienceGoogle Scholar
    • 10. F. Charles, G. Mongardi and G. Pacienza, Families of rational curves on holomorphic symplectic varieties and applications to 0-cycles, preprint (2019); arXiv:1907.10970. Google Scholar
    • 11. K. Cho, Y. Miyaoka and N. I. Shepherd-Barron , Characterizations of projective spaces and applications, in Higher Dimensional Birational Geom., Advanced Studies in Pure Mathematics (Math. Soc. Japan, Tokyo, 2002), pp. 1–88. CrossrefGoogle Scholar
    • 12. C. Ciliberto and A. L. Knutsen , On k-gonal loci in Severi varieties on general K3 surfaces, J. Math. Pures Appl. 101 (2014) 473–494. Crossref, Web of ScienceGoogle Scholar
    • 13. F. Flamini, A. L. Knutsen and G. Pacienza , Singular curves on a K3 surface and linear series on their normalizations, Int. J. Math. 18(6) (2007) 671–693. Link, Web of ScienceGoogle Scholar
    • 14. V. Gritsenko, K. Hulek and G. K. Sankaran , Moduli spaces of irreducible symplectic manifolds, Compos. Math. 146(2) (2010) 404–434. Crossref, Web of ScienceGoogle Scholar
    • 15. B. Hassett and Y. Tschinkel , Moving and ample cones of Holomorphic symplectic fourfolds, Geom. Funct. Anal. 19(4) (2009) 1065–1080. Crossref, Web of ScienceGoogle Scholar
    • 16. A. L. Knutsen, M. Lelli-Chiesa and G. Mongardi , Severi Varieties and Brill-Noether theory of curves on abelian surfaces, J. Reine Angew. Math. 749 (2019) 161–200. Crossref, Web of ScienceGoogle Scholar
    • 17. A. L. Knutsen, M. Lelli-Chiesa and G. Mongardi , Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds, Trans. Amer. Math. Soc. 371(2) (2019) 1403–1438. Crossref, Web of ScienceGoogle Scholar
    • 18. Ch. Lehn and G. Pacienza , Deformations of singular symplectic varieties and termination of the log minimal model program, Algebra Geom. 3(4) (2016) 392–406. Crossref, Web of ScienceGoogle Scholar
    • 19. E. Markman , A survey of Torelli and monodromy results for HyperKähler manifolds, in Proc. Conf. Complex and Differential Geometry, Springer Proceedings in Mathematics, Vol. 8 (Springer, Berlin, 2011), pp. 257–322. CrossrefGoogle Scholar
    • 20. E. Markman , Lagrangian fibrations of holomorphic symplectic varieties of K3[n]-type, in Algebraic and Complex Geometry, Springer Proceedings in Mathematics and Statisitcs, Vol. 71 (Springer, 2014), pp. 241–283. CrossrefGoogle Scholar
    • 21. D. Matsushita, On isotropic divisors on irreducible symplectic manifolds, preprint (2013); arXiv:1310.0896. Google Scholar
    • 22. R. Mboro, Remarks on the CH2 of cubic hypersurfaces, preprint (2017); arXiv:1701.04488. Google Scholar
    • 23. G. Mongardi , A note on the Kähler and Mori cones of hyperkähler manifolds, Asian. J. Math. 19 (2015) 583–592. Crossref, Web of ScienceGoogle Scholar
    • 24. G. Mongardi and G. Pacienza , Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties, Int. Math. Res. Not. 2018(11) (2018) 3606–3620; https://doi.org/10.1093/imrn/rnw346. Crossref, Web of ScienceGoogle Scholar
    • 25. G. Mongardi and G. Pacienza, Density of Noether-Lefschetz loci of polarized irreducible holomorphic symplectic varieties and applications, preprint (2018); arXiv:1804.09440. Google Scholar
    • 26. V. V. Nikulin , Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980) 103–167. Crossref, Web of ScienceGoogle Scholar
    • 27. G. Oberdieck, J. Shen and Q. Yin, Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants, preprint (2018); arXiv:1805.07001. Google Scholar
    • 28. K. G. O’Grady , Higher dimensional analogues of K3 surfaces, in Current Developments in Algebraic Geometry, Mathematical Sciences Research Institute Publications, Vol. 59 (Cambridge University Press, Cambridge, 2012), 257–293. Google Scholar
    • 29. Z. Ran , Hodge theory and deformations of maps, Compos. Math. 97 (1995) 309–328. Web of ScienceGoogle Scholar
    • 30. M. Shen, Rationality, universal generation and the integral Hodge conjecture, preprint (2016); arXiv:1602.07331. Google Scholar
    • 31. M. Shen , Prym-Tjurin constructions on cubic hypersurfaces, Documenta Math. 19 (2014) 867–903. Crossref, Web of ScienceGoogle Scholar
    • 32. B. Totaro , On the integral Hodge and Tate conjectures over a number field, Forum Math. Sigma 1 (2013) e4, 13 pp. CrossrefGoogle Scholar
    • 33. C. Voisin , On integral Hodge classes on uniruled or Calabi-Yau threefolds, in Moduli Spaces and Arithmetic Geometry, Advanced Studies Pure Mathematics, Vol. 45 (Mathematical Society Japan, Tokyo, 2006), pp. 43–73. CrossrefGoogle Scholar
    • 34. C. Voisin , Some aspects of the Hodge conjecture, Jpn. J. Math. 2(2) (2007) 261–296. Crossref, Web of ScienceGoogle Scholar
    • 35. C. Voisin , Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, in K3 Surfaces and Their Moduli, Progress in Mathematics, Vol. 315 (Birkhäuser, 2014), pp. 365–399. Google Scholar
    • 36. C. Voisin , On the universal CH0 group of cubic hypersurfaces, J. Eur. Math. Soc. 19 (2017) 1619–1653. Crossref, Web of ScienceGoogle Scholar
    • 37. B. Wieneck , Monodromy invariants and polarization types of generalized Kummer fibrations, Math. Z. 290(1–2) (2018) 347–378. Crossref, Web of ScienceGoogle Scholar
    • 38. J. Wierzba , Contractions of symplectic varieties, J. Algebra Geom. 12 (2003) 507–534. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!