World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Optimal Liouville-type theorems for a system of parabolic inequalities

    https://doi.org/10.1142/S0219199719500433Cited by:8 (Source: Crossref)

    We establish optimal Liouville-type theorems for the system of parabolic inequalities

    utΔuvp,vtΔvuq
    and for the scalar inequality
    wtΔwwp
    in the whole space N× and in N×(0,). Our optimal Liouville-type theorems are proved for two different classes of solutions: the nontrivial nonnegative and the positive.

    AMSC: Primary 35B53, Primary 35R45, Primary 35K55, Secondary 35B33

    References

    • 1. D. Andreucci, M. A. Herrero and J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 14(1) (1997) 1–53. Crossref, Web of ScienceGoogle Scholar
    • 2. S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations 36(11) (2011) 2011–2047. Crossref, Web of ScienceGoogle Scholar
    • 3. P. Baras and M. Pierre, Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2(3) (1985) 185–212. Crossref, Web of ScienceGoogle Scholar
    • 4. T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. 13(1) (2011) 219–247. Crossref, Web of ScienceGoogle Scholar
    • 5. M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations Aux Dérivées Partielles et Applications (Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998), pp. 189–198. Google Scholar
    • 6. M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden–Fowler equations and systems, Adv. Differential Equations 15(11–12) (2010) 1033–1082. Google Scholar
    • 7. J. Busca and R. Manásevich, A Liouville-type theorem for Lane–Emden systems, Indiana Univ. Math. J. 51(1) (2002) 37–51. Web of ScienceGoogle Scholar
    • 8. Z. Cheng, G. Huang and C. Li, On the Hardy–Littlewood–Sobolev type systems, Commun. Pure Appl. Anal. 15(6) (2016) 2059–2074. Crossref, Web of ScienceGoogle Scholar
    • 9. D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(3) (1994) 387–397. Google Scholar
    • 10. M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction–diffusion system, J. Differential Equations 89(1) (1991) 176–202. Crossref, Web of ScienceGoogle Scholar
    • 11. J. Földes, Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems, Czechoslovak Math. J. 61(136)(1) (2011) 169–198. Web of ScienceGoogle Scholar
    • 12. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966) 109–124. Google Scholar
    • 13. V. V. Kurta, A Liouville comparison principle for solutions of semilinear parabolic inequalities in the whole space, Adv. Nonlinear Anal. 3(2) (2014) 125–131. Crossref, Web of ScienceGoogle Scholar
    • 14. V. V. Kurta, A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities, Adv. Nonlinear Anal. 4(1) (2015) 1–11. Crossref, Web of ScienceGoogle Scholar
    • 15. E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in N, Differential Integral Equations 9(3) (1996) 465–479. CrossrefGoogle Scholar
    • 16. E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001) 1–384. Google Scholar
    • 17. R. G. Pinsky, Existence and nonexistence of global solutions for ut = Δu + a(x)up in Rd, J. Differential Equations 133(1) (1997) 152–177. Crossref, Web of ScienceGoogle Scholar
    • 18. P. Poláčik and P. Quittner, A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation, Nonlinear Anal. 64(8) (2006) 1679–1689. Crossref, Web of ScienceGoogle Scholar
    • 19. P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J. 139(3) (2007) 555–579. Crossref, Web of ScienceGoogle Scholar
    • 20. P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J. 56(2) (2007) 879–908. Crossref, Web of ScienceGoogle Scholar
    • 21. P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann. 364(1–2) (2016) 269–292. Crossref, Web of ScienceGoogle Scholar
    • 22. P. Quittner, Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka–Volterra systems, J. Differential Equations 260(4) (2016) 3524–3537. Crossref, Web of ScienceGoogle Scholar
    • 23. P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser Verlag, Basel, 2007). Google Scholar
    • 24. W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations 161(1) (2000) 219–243. Crossref, Web of ScienceGoogle Scholar
    • 25. J. Serrin and H. Zou, Non-existence of positive solutions of Lane–Emden systems, Differential Integral Equations 9(4) (1996) 635–653. CrossrefGoogle Scholar
    • 26. P. Souplet, The proof of the Lane–Emden conjecture in four space dimensions, Adv. Math. 221(5) (2009) 1409–1427. Crossref, Web of ScienceGoogle Scholar
    • 27. M. A. S. Souto, A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems, Differential Integral Equations 8(5) (1995) 1245–1258. CrossrefGoogle Scholar
    • 28. S. D. Taliaferro, Blow-up of solutions of nonlinear parabolic inequalities, Trans. Amer. Math. Soc. 361(6) (2009) 3289–3302. Crossref, Web of ScienceGoogle Scholar
    • 29. H. Zaag, A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure, Comm. Pure Appl. Math. 54(1) (2001) 107–133. Crossref, Web of ScienceGoogle Scholar